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1. Introduction

Magnetic perturbations (MP) are induced in tokamaks to sta-
bilize the edge plasma with respect to edge-localized modes 
(ELMs) and enhance plasma exhaust (see [1] and references 
therein). The method is effective, especially at low col-
lisionality, but it induces serious drawbacks, such as the so-
called ‘density pumpout’ [2] (a decrease of electron density 
throughout the plasma cross-section), and a series of modi-
fications of plasma edge kinetic quantities, which have been 
recorded in TEXTOR [3, 4], in DIII-D [5] and, more recently, 
in a detailed study of ECE electron temperature profiles with 
the m/n = 2/1 MP in ASDEX Upgrade [6]. These modifica-
tions include significative perturbations of floating potential, 
edge electron pressure and �E × �B flow, which at a first approx-
imation follow the helicity of the applied base mode. This is 
a problem with MPs, since ELM stability depends on plasma 
pressure, whereas the external knobs are the currents in the 
feedback coils. This mismatch between external, magnetic 

action, and internal kinetic response from the plasma is a cru-
cial problem with MPs.

In this paper we will present new results in the RFX 
reversed-field pinch, showing that sidebands, toroidally cou-
pled to the base mode, complicate the kinetic plasma response 
to MPs. RFX possesses a different magnetic configuration 
with respect to tokamaks: nevertheless, it shows a stochastic 
edge produced by MPs which are well-controlled (in phase 
and amplitude) by a full coverage of 192 feedback coils. 
Moreover, the kinetic plasma response is measured by means 
of an almost full coverage (in both toroidal and poloidal 
angles) of edge diagnostics. This makes RFX an ideal exper-
imental benchmark for comparing in a detailed way the action 
(coils) and response (kinetic quantities). Measurements will 
be compared to guiding-center simulations with the code 
orbit [7]: besides a more traditional interpretation in terms of 
connection lengths, the role of sidebands will be validated via 
calculations of the Poincaré recurrence time, applied for the 
first time to plasma physics.

Nuclear Fusion

Toroidal coupling in the kinetic response  
to edge magnetic perturbations

G. Spizzo1 , M. Agostini1, P. Scarin1, R.B. White2, O. Schmitz3, 
M. Spolaore1 , D. Terranova1 , M. Veranda1  and N. Vianello1

1 Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA)  
Corso Stati Uniti 4 - 35127 Padova, Italy
2 Plasma Physics Laboratory, Princeton University, PO Box 451, Princeton, NJ 08543,  
United States of America
3 Department of Engineering Physics, University of Wisconsin, Madison, WI 53706,  
United States of America

E-mail: gianluca.spizzo@igi.cnr.it

Received 13 July 2017
Accepted for publication 6 September 2017
Published 26 October 2017

Abstract
The magnetic topology of the stochastic edge of a helical reversed-field pinch, with helicity 
m/n, shows to be deeply influenced by higher harmonics (m ± 1)/n, with the same n, due 
to toroidal coupling. As a consequence, by measuring kinetic quantities in a particular θ,φ 
location, one can incur in substantial errors or mis-interpretations of the kinetic plasma 
response: only a full 3D coverage of θ,φ angles can reveal the real topology of the plasma. 
This can be a caveat for MP application in tokamaks, because it shows that toroidal and 
poloidal sidebands, though smaller than the base mode by a factor  ∼ε = a/R, can have a 
sizable effect on the kinetic response of the edge plasma, and thus on related issues (for 
example, ELM stabilization and suppression).

Keywords: tokamaks, chaos, magnetic islands, magnetic perturbations

(Some figures may appear in colour only in the online journal)

G. Spizzo et al

Toroidal coupling in the kinetic response to edge MPs

Printed in the UK

126055

NUFUAU

© 2017 Consiglio Nazionale delle Ricerche

57

Nucl. Fusion

NF

10.1088/1741-4326/aa8a9c

Paper

12

Nuclear Fusion

IOP

International Atomic Energy Agency

2017

1741-4326

1741-4326/17/126055+12$33.00

https://doi.org/10.1088/1741-4326/aa8a9cNucl. Fusion 57 (2017) 126055 (12pp)

https://orcid.org/0000-0001-8586-2168
https://orcid.org/0000-0002-2350-2033
http://orcid.org/0000-0001-9339-283X
https://orcid.org/0000-0002-5821-2896
https://orcid.org/0000-0003-4401-5346
mailto:gianluca.spizzo@igi.cnr.it
http://crossmark.crossref.org/dialog/?doi=10.1088/1741-4326/aa8a9c&domain=pdf&date_stamp=2017-10-26
publisher-id
doi
https://doi.org/10.1088/1741-4326/aa8a9c


G. Spizzo et al

2

In previous RFX studies, a very good agreement was found 
between a helical 1/7 edge topology and measurements of 
floating potential, edge electron pressure and �E × �B flow 
[8–15]: the conclusion was that plasma kinetic quantities 
are indeed shaped as the 1/7 dominant helix. The theoretical 
reason for this is that electrons follow closely the magnetic 
field lines, so that even a small amount of chaos can influ-
ence electron density and temperature [16–19]. The effect on 
the floating potential is more subtle, and a proposed theory 
involves the role of ambipolarity in the vicinity of edge 
islands, in a way that the potential has the same symmetry of 
the parent island [20].

New RFX measurements show that the plasma kinetic 
response is far from being a simple 1/7 helix [21, 22]: due to 
toroidicity, an m/n mode always generates (m ± k)/n higher 
harmonics, k = 1, 2, . . ., with the same n. In this paper we 
will show the effect of these higher m ± k modes on the edge 
magn etic topology of RFX-mod: in particular, we will con-
centrate our attention on the k = 1 sideband, which is by far 
the dominant one, and in particular on the 0/7 mode, which 
is the one resonating in the edge. We will show that, by meas-
uring kinetic quantities in a particular θ,φ location, one can 
incur in substantial errors or mis-interpretations of the kinetic 
plasma response: only a full 3D coverage of θ,φ angles can 
reveal the real topology of the plasma. This can be a caveat 
for MP application in tokamaks, because it shows that toroidal 
and poloidal sidebands, though smaller than the base mode by 
a factor  ∼ε = a/R [23], can have a sizable effect on the kinetic 
response of the edge plasma, and thus on ELM-related issues.

2. Mode spectra and basic properties of the RFP 
helical topology

The RFP is characterized by a saturated spectrum of sta-
tionary tearing modes (TM), with main helicities m = 0, 1 and 
0 < n � 20 [24], whose amplitude and phases are measured 
in great detail. At high ( Ip > 1 MA) current, the RFP shows 
a typical high-confinement helical state, dubbed quasisingle 

helicity—QSH, where the entire plasma column is moulded 
as an helix (see [25] and references therein). Very pure QSH 
states have been obtained in the Reversed Field eXperiment—
modified (RFX-mod) in Padua, Italy [26], where a state-of-
the-art feedback control system of the tearing modes [27] 
allows for obtaining an almost monochromatic TM spectrum, 
with a strong, dominant q = m/n = 1/7 mode resonating in 
the plasma core [28].

Our case study is a typical QSH discharge, #37537 at t = 130 
ms, with plasma current Ip = 1.5 MA and on-axis magnetic 
field B = 1.4 T. Eigenfunctions for the TMs are calculated with 
the NCT code, by solving the Newcomb’s equations in toroidal 
equilibrium, using as constraints the pick-up coil measure-
ments in the edge [23]. The eigenfunction profiles are then 
inserted in orbit, which is a Hamiltonian guiding-center code 
in Boozer coordinates, (ψp, θ, ζ) [7]. Eigenfunctions are treated 
in the general representation δ�Bm,n = ∇× (αm,n(ψp)�B0), with 
�B0 the equilibrium field [29, 30]. The application to the RFP 
tearing modes introduces spurious components in the longitu-
dinal direction, whose contrib ution to topology and transport 
is absolutely negligible [31]. The spectrum of TM is shown 
in figures  1: figure  1(a) shows the m = 1 component, while 
figure 1(b) shows the m = 0 comp onent of the spectrum. In 
figure 1(a) it is evident the presence of the 1/7 mode, one order 
of magnitude larger than the other n > 7 modes. The 1/7 mode 
is the innermost resonant TM, given the value of the safety 
factor on axis, q(0) ∼ 0.15, which is typical of RFX-mod [32]. 
The m = 0 spectrum shows a similar, almost monochromatic 
shape (figure 1(b)). It is worth noting that the large 0/7 mode 
appears only in the Newcomb analysis in toroidal geometry 
(red lines in figure 1(b)), while in cylindrical geometry (lines 
in cyan) the spectrum is flatter (with peaks at n = 8, 13 and 
19). In fact, the 0/7 mode is generated by the 1/7 via toroidal 
coupling, the ±1/0 mode being the ‘mediator’ between modes 
with the same toroidal number [23]. This interaction is a geo-
metrical effect of the Shafranov shift: as such, the 0/7 mode 
inherits the same rotation frequency and a well-definite phase 
relation with the parent 1/7 mode.

Figure 1. Spectrum of tearing modes in the RFX-mod experiment: (a) m = 1 modes, (b) m = 0 modes. Top row, maximum of the 
eigenfunction along the radius, bottom row, eigenfunction evaluated at the liner. In cyan, the eigenfunction is calculated in cylindrical 
approximation; in red, in toroidal geometry.
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The Poincaré map of the helical state of RFX is shown in 
figure 2: generally speaking, it shows a marked similarity with 
the tokamak edge, when RMPs are applied (see e.g. figure 3 in 
[33]), provided the toroidal angle in the RFP is substituted for 
the tokamak poloidal angle. The 1/7 mode determines a large, 
conserved structure in the core (pink points), corresponding 
to the strong core temperature increase observed in the QSH 
state [25]. Conserved islands (light green points) are seen also 
in the RFX edge, near the reversal surface at q = 0, which is 
marked as an horizontal, green line in figure 2: those are the 
0/7 islands, which correspond to the resonant response to the 
toroidally coupled m = 0 mode. At mid-radius, the overlap 
between n > 7 resonances determines a chaotic sea, which 
extends to the X-points (XP from now onward) of the 0/7 
islands. The 1/7 mode is so strong that determines a n = 7 
wiggle in the chaotic sea, up to the edge (the modulation of 
black points near the reversal in figure 2, sometimes referred to 
as magnetic flutter [34]). This magnetic-flutter can be analyti-
cally determined from the original Hamiltonian of field lines 
through a canonical transformation [35]. It is the competition 
between the m = 0 islands in the edge, and the 1/7 magn-
etic flutter, that determines the plasma-wall interaction, as 
already anticipated in the past on RFX [36]. In particular, this 

competition depends on the phase relation between the 1/7 
and the 0/7 modes. In RFX, it is observed that these modes 
have typically the same phase at θ = π [23]: topologically, 
this translates in the O-points (OP) being aligned along the 
toroidal angle ζ, in the Poincaré section at θ = π, as shown in 
figure 2(b). Consequently, at θ = π the magnetic flutter limits 
the size of 0/7 islands towards the edge, as we will consider 
in more detail later in section 3. Conversely, at θ = 0 the OP’s 
of the 1/7 correspond to the XP’s of the 0/7, since the m = 0 
structure does not change by varying the surface of section, 
while the m = 1 structure advances of π/7 in the positive ζ 
direction, when θ is increased (see figure 2(a)). In this case, 
the magnetic flutter moves radially outwards, into the weakly 
chaotic region of the 0/7 XP’s, and touches the wall. This 
aspect will also be expanded in section 3.

Despite this tangled topology, in the past a very good 
agreement has been found between a simple, helical 1/7 sym-
metry and measurements of floating potential, edge electron 
pressure and �E × �B flow [8–15]. Nevertheless, those measure-
ments were performed along the toroidal angle φ, at two fixed 
poloidal locations θ = 0,π  (the same as in figure  2). Little 
or no information was available along the poloidal direction. 
As we will see in the following sections, this lack of poloidal 
information led to the erroneous belief that edge kinetic 
quanti ties Fk followed a perfect helical shape. Accordingly, a 
helical angle was introduced as

u(θ,φ; t) = mθ − nφ+ ωm,nt. (1)

The initial phase of the mode was chosen in a way that 
u1,7 = π/2 corresponds to the OP of the 1/7 island, while 
u1,7 = 3π/2 corresponds to the XP [10]. The helical angle 
provides a unique way of mapping diagnostics placed at 
different θ,φ to the helical topology, and the conclusion 
was that all kinetic quantities followed the helix, or that 
Fk ≈ sin u1,7(θ,φ; t) (‘harmonic’ approximation).

A hint that kinetic quantities could follow a shape more 
complicated than u, with an additional dependence on θ, was 
anyway shown in [10]: in particular, figure  8 in that paper 
shows a possible role of the 0/7 islands, and figure 8(c) in [8] 
shows that the floating potential Vf jumps from θ = 100◦ to 
250◦ with no smooth dependence on time, during a single 1/7 
island rotation period.

New measurements of electron pressure in RFX, per-
formed with two twin thermal helium beam (THB) diag-
nostics placed at θ = 0, 90◦ and the same toroidal angle [37], 
clearly show that the harmonic approximation does not hold. 
In figure 3 the time traces of the two THB monitors are shown: 
the signals are perfectly in-phase. If they followed the helical 
angle, equation (1) with m = 1, the two signals should be out 
of phase by an amount ∆t = −π/2ω, but this is clearly not 
the case. To solve this conundrum, we should analyze more in 
detail the topology of the RFX edge.

3. Edge structures: islands and stochastic layers

Given the spectrum of the helical RFX edge, figure  1, it is 
useful to analyze a simplified Poincaré plot where we insert 
as input the n = 7 modes, only. This should highlight the 

Figure 2. Poincaré plot of RFX-mod helical topology, equatorial 
cut at (a) θ = 0 and (b) θ = π. The green, horizontal line is the 
reversal surface at q = 0, the yellow one is the wall.
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fundamental features of the RFX topology. In fact, it is often 
the case that conserved structures are hidden in the complete 
Poincaré plots, such those of figure 2. Regarding the RFP, in 
the past this has been shown, for instance, in the case of bundles 
of field lines characterized by Lévy-flight statistics, embedded 
in the chaotic sea (see figure 2 in [38]). More recently, hidden 
structures have been detected in the vicinity of the large, core 
islands (the pink ones in figure 2), as local maxima in the 3D 
map of finite-size Lyapunov exponents [39].

3.1. Stochastic layers

In our case study, the simplified Poincaré with n = 7 modes 
only, is shown in figure 4. The plot shows immediately that the 
dominant structures in the edge are:

 • the 0/7 islands, which determine the last closed-flux sur-
face (LCFS), which is the cyan, solid curve near the edge. 
In the plot, the LCFS is calculated as the envelope of the 
last intersections of the field lines [22], before hitting the 
wall (horizontal yellow line); 

 • the stochastic layer, which is the blue band of points 
separating the volume of field lines orbiting around the 
0/7 islands in the edge, from the volume of field lines 
orbiting around the 1/7 islands in the core [40]. It is worth 
noting that the stochastic layer is a more rigorous defini-
tion of the magnetic-flutter shown in figure 2.

In the Poincaré plot at θ = 0, figure 4(a), it is evident that the 
outermost structure touching the horizontal yellow line rep-
resenting the wall, is the stochastic layer: this is the conse-
quence of the fact that the 1/7 OP is aligned with the 0/7 XP 
at θ = 0, as anticipated in section 2. Besides this, in a toroidal 
system, O-points and X-points are not aligned radially along 
the rational surface (the q = 0 surface in our case). In fact, 
the solution to the tearing mode equation  maps out asym-
metric islands [41] with the OP shifted inwards and the XP 
outwards, with respect to q = 0. This is exactly the case of the 
0/7 islands in figure 4(a) (note that in RFX we solve the same 
equations used by Fitzpatrick in [41]).

Conversely, at θ = π, figure  4(b), the stochastic layer is 
separated from the wall, and the outermost structure is the 0/7 
island (cyan, solid line). Since one can expect the stochastic 
layer to possess larger connection lengths (see section 4), this 
results in a modulation of the plasma-wall interaction (PWI) 
along both angles, θ and ζ. It is worth noting that the interplay 
between the stochastic layer and the 0/7 island is intrinsically 
non-harmonic: to show this, in figure 4 the ideal displacement 
∆1,7 of the dominant mode is plotted as a solid, pink line. By 
definition, it is ∆1,7 = ∆(0) sin u1,7 (see e.g. figure 1 in [10]). 
Therefore, if the harmonic approximation were satisfied, 
the LCFS should follow ∆1,7. While this is verified at θ = 0 
(figure 4(a)), at θ = π there is a shift of about  ∼0.3 radians in 
ζ, between ∆1,7 and the LCFS (figure 4(b)).

The mechanism of the interplay between stochastic layer 
and 0/7 island in the edge, is made clear in figure 5. The radii 
of the 0/7 islands O-points are plotted as a function of the 
poloidal angle. The m = 0 resonances are shifted inward or 
outward, depending on the relative phase of the 1/7 and 0/7 

Figure 3. Time traces of electron pressure Pe, measured with two 
thermal helium beam diagnostics placed at θ = 0, 90◦ in the same 
toroidal section on RFX-mod. The signals are clearly in-phase, 
apparently contradicting the harmonic approximation on the helical 
PWI.

Figure 4. Poincaré plots of RFX-mod helical topology, equatorial 
cut at (a) θ = 0 and (b) θ = π. A simplified spectrum with n = 7 
modes, only, has been used as input to orbit. The magenta curve 
near the 1/7 islands corresponds to the ideal displacement of the 
1/7 mode (not to scale); the cyan, solid curve near the edge is the 
envelope of the last intersections of the field lines, before hitting the 
wall (horizontal yellow line). For the sake of simplicity, in this plot 
the unperturbed reversal is not shown.
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modes. Islands are closer to the wall at θ ∼ 180◦, the con-
verse at θ = 0: this is truly the m = 1, n = 0 toroidal effect 
described in [23]. Only at θ ≈ 110◦, 260◦ the m = 0 islands 
resonate at the unperturbed reversal surface (green line). This 
effect was already shown in figure 6 of [11]. Consequently, the 
0/7 islands are responsible for the PWI at θ ∼ 180◦ (shorter 
connection lengths), while at θ = 0 the stochastic layer domi-
nates (longer connection lengths).

3.2. Edge islands

When the 0/7 island is the outermost structure touching the 
wall, as in figure 4(b), field lines are not uniformly distributed 
around the OP: in fact, the LCFS (cyan line in figure 4(b)) is 
not symmetric in ζ around the OP, but it is slanted to the right, 
in the direction of larger ζ. This is a common effect in classical 
mechanics: field lines circle around the island O-point with 
frequencies that depend on the distance from the O-point [42]. 
Figure 6 shows the time evolution of points placed initially at 
ψp = 0.089, θ = 0 for a period of 9.14 ms (one toroidal transit 
of a field line on axis, τtor = 2πR/vth), with snapshots taken 
at fixed time intervals (0.55 ms, note that is it not a Poincaré 
plot!). The rotation rate (clockwise) clearly depends on the 
distance from the O-point, with faster rotation happening 
closer to it. Near the OP a full period is about 1.6 ms, while 
outer points do not finish one full period during the run time. 
In fact, the period around the OP is given by [43]:

T =
1√
ᾱ

K(sin(Qb/2)), (2)

with ᾱ = α(rs) amplitude of the TM at the resonance, 
where the profile α(r) is defined in section 2. K is the com-
plete elliptic integral of first kind and Qb = u0,7 − π/2. 
Practically speaking, this means that the period near the OP is 
T ∼ rOP/

√
α, which is proportional to the distance from the 

OP (‘Kepler’-like law4). In this way, field lines tend to occupy 

the region to the right of the OP, which is the effect of orbits 
lagging behind in the clockwise rotation around the OP. One 
can then expect a shorter connection length to the right of the 
OP, since the region to the left is devoid of field lines.

4. Connection lengths

In sections 2 and 3, we have provided a qualitative description 
of the edge topology in the helical RFX: now it is necessary 
to give a quantitative description. As a statistical indicator of 
the interaction between the topology and kinetic properties of 
the edge plasma, we can use the connection length to the wall, 
Lc,w. Introduced in TORE SUPRA to describe the number 
of toroidal turns that magnetic field lines run to connect the 
modules of the ergodic divertor to the wall [44], it has since 
then been extensively used in RMP literature: some exam-
ples include DIII-D [16], TEXTOR [3, 33], MAST [45] and 
ASDEX Upgrade [6]. The rationale is that electrons follow 
closely the field lines, so that regions of low Lc,w are regions 
of increased parallel electron losses. The results presented in 
this section  should clarify the effect of the 0/7 sideband in 
determining electron transport in a stochastic layer produced 
by MPs, which is of critical importance for tokamaks.

We apply the calculation to the case of figure 2, using the full 
m = 0, 1 and n � 24 spectrum of TM. Initial and final condi-
tions are (ψp,0, θ0, ζ0) and (ψp,w, random, random), where ψp,w 
is the poloidal flux at the wall. The initial conditions are then 
varied (for each run) on a grid (ψp,j, θk, ζl), with 1 � j � 7, 
1 � k � 16, 1 � l � 64, and boundaries 0.090 � ψp � 0.096 
and −π � θ, ζ � π (the radial boundary corresponds in 
real space to 40.8 � r � 45.6 cm, being the minor radius 
a = 45.9 cm and the unperturbed reversal rrev = 44.2 cm). 
Each run comprises 1000 collisionless, low energy (10−5 keV) 
ions, which mimic a field line [31], all initiated at the same 
(ψp,j, θk, ζl) on the grid of initial conditions. The connection 

Figure 5. Radii of the O-points of the 0/7 islands, as a function  
of θ.

Figure 6. Snapshots of field lines taken at fixed time intervals 
(0.55 ms), for a period of 9.14 ms (one toroidal transit), showing 
the variation of the rotation rate as a function of increasing distance 
from the OP. Points are initially placed at ψp = 0.089, θ = 0. 
Over-plotted is the Poincaré plot of the stochastic layer, to give a 
reference with the topology shown so far.

4 This is a general law of Hamiltonian systems: a particular instance is the 
Keplerian system, for which the scalar function α(r) coincides with the 
gravitational potential α(r) ∼ −1/r . In that case T ∼ r/

√
α = r3/2, which 

is Kepler’s third law.
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length is then defined as Lc,w = 〈 L 〉, i.e. the average over the 
particles of the parallel length travelled along the field line, 
until they are lost on the wall, L = vthτloss. This definition of 
Lc,w is the same as that used with orbit in a recent work on 
TEXTOR [46], and matches the definition which is found in 
tokamak literature [3, 16, 33, 45]. A first definition, with a 
fixed initial condition and variable final points, was used in 
previous works on RFX [10, 12], but in the present study was 
rejected and modified in favor of the more standard usage, 
since it does not reproduce details of pressure and floating 
potential measurements for shot #37537 and similar ones. 
This is a caveat for the use of Lc,w, since it shows that this sta-
tistical indicator is ill-defined: in particular, it depends on the 
choice of the initial and final conditions. We will come back 
again on this issue in section 5. Finally, to distinguish between 
laminar and ergodic regions, we estimated the Kolmogorov 
length Lk through the procedure of the finite-size Lyapunov 
exponents (FSLE), described in [31]. We deposited 7000 field 
lines at ψp = 0.07, and the result is Lk = 10.8 m (0.86 toroidal 
turns). This is only a reference value, and a more precise, local 
calculation will be given via a different method in section 5.

Given the intrinsic 3D nature of the problem, it is necessary 
to plot Lc,w in all three directions, (ψp, θ, ζ): figure 7 shows 
the contour plots of connection length Lc,w on the equato-
rial plane (ζ,ψp), at four poloidal angles, θ = 0, 90◦, 186◦ 
and 260◦. In the four panels, the white contour level corre-
sponds to Lc,w = Lk, and separates laminar (Lc,w < Lk) from 
ergodic regions (Lc,w > Lk). In the tokamak community, this 
is a standard way of highlighting regions of strong interaction, 

i.e. those with Lc,w > Lk [47]. In figure 7, all of the main fea-
tures discussed in section 3 can be recognized: in particular, 
Lc,w is a factor  ∼6 longer at θ = 0, 90◦, and it is shorter at 
θ = 186, 260◦. Moreover, two very distinct behaviors can be 
recognized:

 (i) At θ = 0, 90◦ the PWI is dominated by the stochastic layer 
(section 3.1), which is closer to the wall and is character-
ized by Lc,w > Lk (red regions). In particular, moving 
from θ = 0 to θ = 90◦ does not change the position of 
the maximum Lc,w along ζ, which sticks to the toroidal 
location of the XP of the 0/7 island. This justifies the fact 
that signals of electron pressure and floating potential are 
in phase at θ = 0, 90◦ (same toroidal section), as shown 
in figure 3; 

 (ii) at θ = 186, 260◦ the PWI is completely dominated by 
the 0/7 islands, following what shown in figure 5. The 
‘Kepler’-like motion of field lines around the OP of the 
0/7 island (figure 6) determines the formation of laminar 
pockets to the right of the OP, as described in section 3.2. 
Conversely, to the left of the OP an ergodic region forms, 
with Lc,w > Lk: it is this region now, that dominates 
PWI. Again, moving from θ = 186◦ to θ = 260◦ does 
not change the position of the maximum Lc,w, which is 
now close to the OP of the 0/7 island. Again, signals of 
floating potential are in phase at 186, 260◦.

Summarizing, more than a helical shape, the PWI seems 
to be the combination of two regions of m = 0 interaction, 
0 < θ < 90◦ and 180 < θ < 260◦, arranged along a helix. 

Figure 7. Contour plots of connection length Lc,w on the equatorial plane (ζ,ψp), at four poloidal angles, θ = 0, 90◦, 186◦ and 260◦. 
Overplotted, the Poincaré plots of the helical topology, simplified spectrum with n = 7 modes, only. The unperturbed reversal is the 
horizontal, green line, the wall is the yellow line. The white contour corresponds to the Kolmogorov length Lk, and separates laminar  
and ergodic regions.
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Therefore, PWI is dominated by the toroidal sideband of the 
base mode, which is a strikingly new result with respect to pre-
vious RFP and tokamak literature. This is made evident if one 
plots the contour of Lc,w(ψp, θ, ζ) at the outermost point of the 
radial grid, ψp = 0.096, on the (θ, ζ) plane. This is shown in 
figure 8: the contour is characterized by two horizontal stripes 
of large Lc,w at constant ζ, the first generated by the stochastic 
layer and the second by the 0/7 islands, respectively. Actually, 
this was shown already in a previous paper (figure 9 in [36]), 
but the authors in that paper neglected the role of poloidal 
sidebands. The deviation of the real PWI from a helix is high-
lighted in figure 8 by plotting the location of the OP of the 1/7 
helix as a continuous, slanted line.

Another way of showing the deviation of the PWI pattern 
from a helix is by calculating the maximum of Lc,w(0.096, θ, ζ) 
along ζ, say ζmax, for each value of θ in the poloidal grid. One 
can then translate the values (ζmax, θ) in helical angles using 
equation (1), and considering the variation of umax

1,7  along θ. As 
anticipated in section 2, if the PWI followed a perfect helical 
shape, umax

1,7  should be constant along θ: for example, it should 
be umax

1,7 = π/2 if it followed the 1/7 OP [10]. In figure 9 the 
maximum umax

1,7  is plotted in orange, the light-orange shaded 
region highlighting the width at half maximum (FWHM) of 
Lc,w. The shape and the position of the maximum depend on the 
poloidal angle θ, contrary to the helical (‘harmonic’) approx-
imation: at θ = 0, the maximum of the connection length is at 
u1,7 ≈ π/2, with a narrow distribution; then moving towards 
θ ∼ 140◦, the maximum moves up to u1,7 ∼ π , and the distri-
bution becomes wider; then it moves back to π/2 at θ = 180◦. 
The change in the shape of Lc,w is due to the different pattern 
of the stochastic layer, with a narrow, ‘V’-shaped topology 
(see figure 7(a)), if compared to the broader 0/7 islands (see 
figure 7(c)). The dependence of umax

1,7  on θ is another way of 
stating that there are regions of the plasma where the depend-
ence is not m = 1, but m = 0. Besides this, figure 9 also shows 
that, if one considers only two probes placed at θ = 0, 180◦, 
the maximum umax

1,7 ≈ π/2, i.e. it reproduces a perfect helical 
shape. This was reported in the past on RFX, based on meas-
urements performed on the equatorial plane, only [8–15]. The 

new pattern of Lc,w reproduces quite well experimental data: 
in figure 9 black triangles are the position (in u1,7) of the min-
imum of the floating potential Vf, measured with a poloidal 
array of 5 internal probes belonging to the ISIS system [48], 
and averaged over  ∼20 discharges. There is a caveat while 
comparing Lc,w and Vf, since the first is the result of orbit 
simulations at a fixed time instant, while Vf is a measurement 
averaged over many times and shots. Despite this, the agree-
ment is quite good, showing that Vf, too, does not follow a 
straight, horizontal line. The deviation of Lc,w and Vf from a 
helix is of the order ∆u1,7 ∼ 90◦, which is  ∼25 %, approxi-
mately a factor  ∼ε = a/R, consistent with the magnitude of 
the toroidal effects on RFX [23]. Similar effects are to be 
expected in the tokamak edge, when MPs are applied: but to 
reveal them, a thorough 3D analysis of magnetic inputs and 
kinetic outputs should be undertaken.

5. Definition and use of the Poincaré recurrence 
time

As explained in section 4, in presence of tangled topologies, 
such as those of the RFX edge and tokamak stochastic layers, 
the connection length Lc,w becomes ill-defined: in particular, 
it depends on the choice of the initial and final conditions. 
To assess the role of sidebands in determining the plasma 
response to a base mode, it is therefore necessary to intro-
duce a probabilistic description of chaos, namely the Poincaré 
recurrence time. This is a unequivocally defined property 
of a bounded area A. In fact, the Poincaré theorem of recur-
rences states that for any initial condition in A, trajectories 
will repeatedly return to A if the dynamics is area-preserving, 
such is the case of the magnetic field for which ∇ · �B = 0. 
The theorem has a general applicability, since it is valid for 
all systems satisfying the Liouville theorem on the preserva-
tion of phase volume [49]. The statistics of the recurrence 
times reflect any non-uniformity in the phase-space, and they 
are used in Hamiltonian chaos theory to map systems with 
a stochastic sea and islands: the topology of the RFX edge 

Figure 8. Contour plot of Lc,w @ ψp = 0.096 (the last point in 
the radial mesh), on the (θ, ζ) plane. The continuous, black lines 
mark the location of the OP of the 1/7 island: they correspond to 
u1,7 = π/2, or ζ = θ/7 − π/14 − 2kπ/7, k ∈ Z. It is clear that the 
PWI has a strong, non-helical component due to the m = 0 mode.

Figure 9. Location of maximum Lc,w @ ψp = 0.096 and minimum 
floating potential Vf in the helical angle u1,7, as a function of the 
poloidal angle θ. This plot shows the deviation of Lc,w and Vf from 
the helical shape. The colored band around Lc,w is the FWHM.
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(and that of tokamaks with MPs) is therefore an ideal case to 
exploit this method. Even though the concept of recurrences 
is not new in plasma physics (an instance is the application of 
recurrence plots [50] to time-series analysis of electrostatic 
turbulence [51]), this is the first time that a rigorous definition 
of Poincaré recurrence is applied to a fusion device.

Following Zaslavsky [49], we define a bounded area A of 
volume Γ(A), sketched in figure 10 as a yellow rectangle. We 
can define an escape time from A as the time spent inside the 
volume A, i.e. the interval between the first entrance tIN1 and 
the (second) exit time tOUT:

τ (esc) = tOUT − tIN1. (3)

The escape time is shown as a green solid line inside area A in 
figure 10. The first trajectory, from the deposition point to the 
first entrance tIN1, is shown as a dashed line in the same figure, 
and it is neglected since the first time a particle exits A it lacks 
a correct definition of the escape time. Similarly, we introduce 
the time a particle spends outside A, as the time between the 
exit time tOUT and the second entrance tIN2:

τ (ext) = tIN2 − tOUT. (4)

This ‘external’ time is shown as an orange solid line in 
figure 10. The recurrence time is the time spent out plus the 
escape time, and thus:

τ (rec) = τ (esc) + τ (ext) = tIN2 − tIN1. (5)

Therefore, to map the recurrence times in A, it is neces-
sary to record only two successive entrance times, for each 
particle: the exit times do not carry relevant information. 
Mathematically speaking, the recurrence time is defined as 

the limit limΓ(A)→0 τ
(rec) [49], so the volume Γ(A) should be 

small with respect to the system size. In this way, the Poincaré 
recurrence time becomes truly dependent on the volume area 
A only, thus being a better observable than the connection 
length Lc,w.

The area A to determine the Poincaré recurrences is eas-
iest defined as a closed ellipsoid centered in (ψp,0, θ0, ζ0), and 
bounded by the surface defined according to:

R2
e = 2π

(
ψp − ψp,0

ψp,w

)2

+ (sin θ − sin θ0)
2 + (cos θ − cos θ0)

2

+ (sin ζ − sin ζ0)
2 + (cos ζ − cos ζ0)

2.
 

(6)

The ‘radius’ Re of the ellipsoid is chosen as to be comparable 
to the grid spacing of section 4; the 2π factor in front of the 
first term in the r.h.s. of equation (6) is necessary for reducing 
the elongation of the ellipsoid in the radial direction.

While the existence of the recurrence time is guaranteed by 
the theorem proved for the first time by Poincaré, the practical 
applicability of this observable relies on the estimate of the 
average τrec over a distribution P(t). In fact, one can define a 
probability distribution function (p.d.f.) of recurrences t, with 
P(t)dt the probability for τ (rec) of falling between t and t + dt. 
Then the mean recurrence time τrec can be introduced as [49]

τrec =

∫ +∞
0 t P(t)dt∫ +∞
0 P(t)dt

. (7)

Boltzmann, in a reply to Ernst Zermelo, was the first to show 
that, in a perfect gas, the Poincaré recurrence time calculated 
according to equation  (7) is overwhelmingly large [52]. A 
more general estimate is given by the Kac lemma [49] as

τrec = ∆t
Γ

Γ(A)
< ∞, (8)

where ∆t  is the time between two successive interceptions in 
the Poincaré plot, Γ the total volume of the phase space. In the 
case of a toroidal RFP, figure 11 shows an example of calcul-
ation of P(t) in a sample volume near the 0/7 island XP, just 
within the stochastic layer described in section 3. The equato-
rial section of the volume defined according to equation (6) is 
shown in figure 11(a) as a pink, shaded area. In this case, the 
Kac formula (8) can be simplified to

τrec ≈ τtor
2π2a2R
Γ(A)

=
3
2
πτtor

( a
∆r

) 1
∆θ∆ζ

= 290τtor, (9)

where Γ(A) = 4/3π∆r(a∆θ)(R∆ζ) is the volume of the 
ellipsoid defined in equation (6). Therefore, in the RFP, con-
trary to the famed Boltzmann case, the average recurrence 
time is well within computational capabilities.

For each particle we record successive recurrence times 
(equation 5), restarting each particle that has returned the 
volume with random position inside A. The p.d.f. of recur-
rences is shown in figure 11(b). It can be demonstrated [49] 
that in a homogeneous, uniform, fully chaotic system with a 
Chirikov parameter well above the stochastic threshold [53], 
the p.d.f. of recurrences follows the exponential law:

P(t) =
1

τmix
exp

(
−t
τmix

)
, (10)

and that τmixvth = Lk , with Lk the Kolmogorov length. 
Trajectories for which scaling (10) applies are called ‘uni-
form mixing’ [49] because of the absence in phase space of 
singular zone domains with zero Lyapunov exponents (or 
infinite Lk, conserved domains), such as the pink and green 
islands of figure 2. We will therefore call the correspondent 

Figure 10. Sketch for the definition of the Poincaré recurrence 
time: the domain A is the yellow rectangle, the ‘escape’ time 
corresponds to the green solid trajectory, while the ‘external’ time 
corresponds to the orange solid trajectory. The first trajectory out of 
A is the dashed line, and it is neglected in the calculation.
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exponent the ‘mixing’ recurrence time, τmix . Figure  11(b) 
shows anyway that, in the stochastic edge of the RFX (and, 
by similarity, in the ergodic edge of a tokamak with RMP) 
a long tail of sub-exponential, or power law, appears. This 
tail is evident in figure  11(b), and it is formed by points 
placed to the right of the red line interpolating the initial, 
exponential decay P(t) ∼ e−t/τmix. This means that there 
is a non-negligible fraction of particles with t � τmix, that 
are trapped in islands and ‘sticky’ regions with nearly zero 
Lyapunov exponents, such as islands and the stochastic layer 
of figure 4, before re-entering area A. As a consequence, the 
average recurrence time defined in equation (7) is larger than 
the ‘mixing’ time, τrec > τmix. In figure 11(b) the exponential 

time is τmix = 0.4τtor, corre sponding to Lmix = 5 m, while 
the (average) recurrence time is τrec = 6τtor, corresponding 
to Lrec = 76 m. These values are compatible both with 
Lk = 10.8 m estimated in section  4, and with the value of 
Lc,w of figure  7(a). The tail is shown in the bi-logarithmic 
plot of figure 11(c) as a blue, solid line, and shows that for 
t > t∗ ∼ 30τtor  the p.d.f. of recurrences follows the power law

P(t) ∼ t−γ , (11)

with γ = 2.85. This value of the exponent is compatible with 
the value γ = 3 that in chaos theory is found for the Sinai bil-
liard [54]. Moreover, according to the Kac lemma (8) applied 
to an algebraic tail, any value γ > 2 is an unambiguous proof 
of the existence of ‘dynamical traps’ in the system, such as 
islands and sticky regions with zero Lyapunov exponents.

It is worth noting that the presence of a sizable, power-
law tail in the recurrences p.d.f. P(t) is consistent with the 
sub-diffusive nature of transport, which was already pointed 
out in chaos studies of the RFP [38, 55, 56]. This confirms 
also that chaos in fusion plasmas is too close to the stochastic 
threshold, to apply the random phase approximation. In other 
words, it is far from being homogeneous and uniform, so that 
the Rechester-Rosenbluth formalism [57], and the related 
quasilinear diffusive scheme, though quite popular in the field, 
is an overly crude simplification of the system dynamics (for 
a review of these issues, see [58]).

Now, let us use Poincaré recurrences to characterize the 
stochastic edge of RFX-mod. We start from the case shown 
in figure 7(a), and we restrain our analysis to a single n = 7 
period along the toroidal angle. Define an array of 12 × 6 vol-
umes in the (ζ,ψp) plane at θ = 0, calculated according to 
equation (6): the array is shown in figure 12. For each volume 
we calculate a p.d.f. of recurrences, and a mean recurrence 
time τrec through equation  (7). For the sake of comparison 
with the connection lengths, we determine the recurrence 
length Lrec = τrecvth. The comparison between Lc,w and Lrec is 
shown in figure 13: the first noteworthy feature arising from 
figure 13(b) is that Lrec is not defined in a large part of the edge 
domain, namely in the laminar regions with Lc,w < LK . This 
comes naturally from the fact that τrec > τmix practically by def-
inition (figure 11(b) and equation (10)), and that Lk = τmixvth : 
in the laminar regions, particles (field lines) are lost before 

Figure 11. Poincaré recurrence time in a chaotic domain (a) 
Poincaré plot at θ = 0, the pink shaded area is the area A to 
calculate recurrences; (b) p.d.f. of recurrences, logarithmic plot: 
the red line shows the initial exponential decay; (c) p.d.f. of 
recurrences, bi-logarithmic plot, to show the power law of the tail.

Figure 12. Definition of the volumes to calculate Poincaré 
recurrences: the volumes are arranged in a 12 × 6 array in the 
(ζ,ψp) plane at θ = 0.
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they can return at least once to area A. On the contrary, the 
two main features determining transport in the edge emerge 
quite well: they are the stochastic layer (Lrec ∼ 1.5 ÷ 2 km) 
and the edge m = 0 islands (Lrec ∼ 3 ÷ 4 m: for the sake of 
comparison, 1 toroidal turn  =  12 m in RFX, so 100 toroidal 
turns  =  1.2 km). Therefore, at θ = 0 the structure closer to 
the wall is the stochastic layer, with large Poincaré recurrence 
times (>100 toroidal turns). This confirms, on grounds of a 
mathematically better defined metric, the fact that particles 
inside the ‘ergodic’ region [3, 33] experience many times the 
whole plasma volume, before returning to their starting point: 
this is consistent with a larger temperature inside the ergodic 
region, both in tokamaks [4] and in RFX-mod [21]. Particles 
around the OP of the edge islands experience only partly the 
plasma volume (τrec ∼ 1 toroidal turn), and particles in the 
laminar regions experience none, they are rapidly lost to the 
wall. In this respect, from the point of view of recurrences, 
regions with Lc,w in the range 1 − 100 m are indistinguishable, 
no particle returns to area A (see the correspondence between 
the white regions in figure  13(b) and the contour levels in 
figure 13(a)). Therefore, discussing tiny variations of Lc,w in 
the meter-to-kilometer range might not add significant infor-
mation, even in the tokamak MP case.

Finally, let us repeat the analysis at two different values 
of θ, namely θ = 90◦ and 186◦: results are shown in fig-
ures  14(a) and 14(b), respectively. At θ = 90◦ the region 
of larger interaction remains the stochastic layer (∼250 
toroidal turns, Lrec ∼ 1.4 ÷ 3 km), but the regions with 
the OP get closer to the wall. At θ = 186◦ the plasma-wall 
interaction is completely governed by the m = 0 islands 
(Lrec ∼ 2.6 ÷ 3 m), in all respects similar to what discussed 
in section 4.

6. Summary and conclusions

In this paper we discuss the role of toroidally coupled side-
bands in determining the kinetic response of the plasma to 
an applied base mode of a well-defined helicity. The result 
is that sidebands are as important as the base mode in deter-
mining the details of plasma pressure and floating potential 
in the edge, when MPs are applied: this should be a caveat 
for toka maks, since ELM stability depends directly on 
edge plasma pressure. Our case study is the topology of the 
RFX-mod helical edge (r/a � 0.85), which is dominated by 
a 1/7 modulation. In the past, this base mode was found to 
dominate measurements of electron pressure, floating poten-
tial and plasma flow [8–15]. New measurements show that 
m = 0 effects are strong [21, 22], the 0/7 mode being the 

(a)

(b)

Figure 13. Comparison of two different chaos metrics, the 
connection length Lc,w and the Poincaré recurrence ‘length’ 
Lrec = τrecvth, τrec being the Poincaré recurrence time: (a) is a zoom 
of figure 7(a) along a single n = 7 period in the toroidal angle ζ; 
(b) is a contour of Lrec in the same region. The poloidal section is at 
θ = 0.

(a)

(b)

Figure 14. Poincaré recurrence length Lrec at two more poloidal 
angles, θ = 90◦ (frame (a)) and 186◦ (frame (b)). This figure should 
be compared to the analog figure 7.
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main sideband toroidally coupled to the base mode [23]. 
This toroidal correction is found to be of order ε = a/R. 
Simulations of magnetic topology and of connection lengths 
to the wall, performed with the guiding-center code orbit, 
reproduce in detail measurements, and provide an explana-
tion of the observed deviation in terms of two structures that 
are well-known in chaos theory: a stochastic layer separating 
the 1/7 and 0/7 resonances, and field line orbits around the 
O-points of the 0/7 islands. Moreover, for the first time in 
plasma physics, a method based on the Poincaré recurrence 
time has been used, and confirms that the main structures 
determining transport in the edge region are the stochastic 
layer, with long recurrence times (>100 toroidal turns), and 
the O-points of the 0/7 islands, with shorter recurrences 
(τrec ∼ 1 toroidal turn). The large value of the recurrence 
time within the stochastic layer means that particles in this 
region experience a large plasma volume, before returning 
back, and this is consistent with the larger electron temper-
ature measured in this region [21], in all respects similar to 
the tokamak ‘ergodic fingers’ [4]. The use of the Poincaré 
recurrence time is to be preferred with respect to the connec-
tion length, because it is an intrinsic property of the volume 
considered, and it does not depend e.g. on the starting and 
ending point of particle trajectories.

Results shown in this paper are in line with [59], where 
the importance of sidebands toroidally coupled with a base 
mode is demonstrated for a helical RFP and a circular 
tokamak, through an analytic, geometrical approach. These 
results should be of interest for the application of RMPs in 
tokamaks, as explained above: in this respect, while in the 
RFP and a circular tokamak toroidal coupling is limited to 
the Shafranov shift, only, in D-shaped tokamaks the effect 
should be even stronger, due to ellipticity and triangularity. In 
fact, recent similarity experiments with DIII-D performed on 
ASDEX-U [60] show that ELM suppression is achieved only 
with at least a moderate value of triangularity (δ > 0.25). 
Our work shows that the kinetic plasma response to the same 
MP can be strongly different even with moderate values of 
toroidal coupling, since the spectrum of sidebands is sig-
nificantly changed by toroidicity (compare the blue and red 
traces in figure 1).
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