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Abstract
Edge topology and plasma flow deeply influence transport in the reversed-field pinch as well as in all fusion devices,
playing an important role in many practical aspects of plasma performance, such as access to enhanced confinement
regimes, the impact on global power balance and operative limits, such as the density limit (Spizzo G. et al 2010
Plasma Phys. Control. Fusion 52 095011).

A central role is played by the edge electric field, which is determined by the ambipolar constraint guaranteeing
quasi-neutrality in a sheath next to the plasma wall. Its radial component is experimentally determined in RFX
over the whole toroidal angle by means of a diagnostic set measuring edge plasma potential and flow with different
techniques (Scarin P. et al 2011 Nucl. Fusion 51 073002). The measured radial electric field is used to construct
the potential in the form �(ψp, θ, ζ ) (ψp radial coordinate, θ , ζ angles), by means of the Hamiltonian guiding-
centre code ORBIT. Simulations show that a proper functional form of the potential can balance the differential radial
diffusion of electrons and ions subject to m = 0 magnetic island O- and X-points. Electrons spend more time in
the X-points of such islands than in O-points; ions have comparatively larger drifts and their radial motion is more
uniform over the toroidal angle. The final spatial distribution of �(ψp, θ, ζ ) results in a complex 3D pattern, with
convective cells next to the wall. Generally speaking, an edge topology dominating parallel transport with a given
symmetry brings about an edge potential with the same symmetry. This fact helps us to build a first step of a unified
picture of the effect of magnetic topology on the Greenwald limit, and, more generally, on flows in the edge of RFPs
and tokamaks.

(Some figures may appear in colour only in the online journal)

1. Introduction

Compelling evidence in the field of magnetically confined
fusion devices shows that the edge magnetic topology
influences plasma flow, and this in turn determines many
practical aspects of plasma performance, such as access to
enhanced confinement regimes, the impact on global power
balance and operative limits, such as the density limit [1].
While studies of magnetic topology are mandatory in the
reversed-field pinch (RFP), where enhanced confinement is
by definition obtained through a bifurcation in the topology
of magnetic field lines, from a chaotic regime [2] to a helical
equilibrium [3–5] (see figure 1), such studies are more recent
in the tokamak community, where the application of resonant
magnetic perturbations (RMPs) in the edge is done purposely
to stabilize the configuration with respect to the edge localized

modes (ELMs) [6, 7] or the multifaceted asymmetric radiation
from the edge (MARFE) [8, 9]. A common observation of
RFPs and tokamaks is that the presence of a tangled magnetic
topology in the edge influences the sign of the radial component
of the edge electric field, Er . In the tokamak, the application
of the RMP changes the sign of Er [10] and of the associated
poloidal flow vθ [11]: typically, the potential well present in
the edge is reduced by the application of RMPs (more positive-
outward Er ). In the RFP, the edge is naturally characterized
by the presence of islands and weak chaos [12, 13], due to the
reversal of the toroidal magnetic field Bφ in the edge, with
the presence of a surface where Bφ = 0 (reversal surface)
and a small, negative Bφ at the wall, Bφ(a) � 0. It is
also observed that the electric field Er (equivalently, toroidal
velocity vφ) changes sign along the toroidal angle φ, being
a footprint of the underlying magnetic topology [14–16].
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Figure 1. Artist’s view of the bifurcation dominating RFP plasmas: (a), (b) the chaotic, multiple helicity—MH state, (c), (d) the helical
equilibrium found in quasisingle helicity-QSH magnetic spectra. (a) and (c) are reconstructions of the plasma shape, 10× the real
deformation in (a), showing that a plasma with a localized bulge in MH evolves towards a more uniform, helical shape in QSH. The inner
magnetic topology is revealed in panels (c) and (d): in (c) it is evident that the MH state corresponds to chaos in the plasma core, with a
residual chain of edge islands resonating at q = 0; panel (d) shows instead the well-conserved helical flux surfaces in the core, which
correspond to increased emission in the soft-x-ray tomographic map.

Moreover, recent results show that the access to the helical
state [17] and, generally speaking, the confinement and the
behaviour of the configuration near operative limits, such as the
Greenwald limit [16], are influenced by edge plasma, namely
the modulation of Er and the flow in the edge. Finally, studies
of the edge topology in the RFP are favourable since the device
is ohmic, circular and without divertor [18], in a way that it is
easy to measure and to simulate.

In this paper we will propose a model explaining the
modulation of the electric field in the edge: we will show
that a tangled magnetic topology causes a differential radial
diffusion of electrons and ions. The resulting electric fields
(determined by the ambipolar constraint) can influence the
flow and finally transport on a macroscopic scale, e.g. overall
confinement and access to the helical state. In this work we will
concentrate on the density limit, which in its extreme situation
is a paradigm of edge transport, and is obtained mainly in the
chaotic state of the RFP, where the edge geometry is essentially
m = 0 (m poloidal mode number, i.e. the θ coordinate is
ignorable for most purposes). The topology and associated
transport is studied with the Hamiltonian guiding-centre code
ORBIT [19]. Results are applicable to tokamak RMPs, where
particle confinement and recycling have been measured to
depend on the edge magnetic topology, namely on the spatial
extent of the stochastic layer and the amount of field lines
with short-connection length attached to the wall [20, 21]. The
paper is organized as follows: in section 2 the background of
the Greenwald limit in the RFP is briefly recalled; in section 3
test-particle simulations (without ambipolar potential) are
presented; in section 4 the results with the potential are shown,
and in section 5 we draw our conclusions and discuss open
issues.

2. Background

The density limit (or ‘Greenwald’ limit) still defies a
comprehensive theoretical explanation, even if in tokamaks
and RFPs it can be characterized phenomenologically in terms
of the Greenwald density [1], namely nG = Ip/πa2 (nG in
1020 m −3, Ip in MA). In the RFX-mod RFP device (R0 = 2 m,
a = 45.9 cm) [18] the phenomenology of the density limit has
been already extensively described elsewhere [14–16, 22, 23]:
here we provide a brief review of the subject. In the RFP, a
central role in determining the Greenwald limit is played by the
edge density: by increasing ne/nG (central density normalized
to Greenwald) temperature decreases and density increases
in the edge. The edge density accumulation takes place at
ne ≈ nG in the chaotic, multiple helicity (MH) state, being
preceded by a back-transition from the nice helical equilibrium
(quasi-single helicity-QSH) to MH at ne/nG ∼ 0.4 (see again
figure 1 and [17]). The edge density accumulation causes an
increase in the total radiation and O IV–O VI line emission, in the
shape of a ring localized toroidally and poloidally symmetric
(m = 0), in analogy with the MARFE [24] in tokamaks,
which is a structure characterized by very low temperature
and strong recombination, toroidally symmetric and poloidally
localized (n = 0, n toroidal mode number). It is the MARFE
in the tokamak, and its poloidal analogue in the RFP, which
ultimately cause the discharge termination (often disruptive in
the tokamak, never disruptive in the RFP [23]).

The huge edge density peak measured in the RFP at
ne/nG ∼ 1, which is the initial trigger of the whole density
limiting phenomenon, cannot be sustained by local diffusion,
D∂nedge/∂r [14]. A breakthrough for the explanation of
this apparently odd phenomenon has been the analysis of the
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Figure 2. Toroidal patterns of total radiation and plasma flow: (a)
plasma flow as a function of the normalized toroidal angle, φ − φlock

(zero=maximum m = 1 bulge), for a discharge with ne/nG = 0.8.
The Poincaré plot of the island associated with the m = 0,n = 1
mode is also shown; (b) for the same discharge, tomographic map of
total radiation (minor radius as the y-axis); (c) map of electron
density obtained from a multichord interferometer as a function of
the toroidal angle; (d) Hα emissivity(solid) and m = 1 perturbation
(dashed). The stagnation point for the plasma flow corresponds to
the X-point of the island and to the maximum radiation and density,
the other null point (=the source) corresponds to the peak of the
influxes. The dashed, horizontal line in panels (a)–(c) corresponds
to the reversal surface, where Bφ = 0.

toroidal component of the flow [15, 16], measured in RFX by
means of the gas-puff imaging (GPI) technique [25, 26]. The
GPI shows that the flow reverses direction toroidally, with the
development of two null points (source and stagnation points),
as shown in figure 2(a) (arrows and the solid, blue line). To
understand the presence of these two null points, we observe
that the edge magnetic topology of the MH state is dominated
by the (m = 0, n = 1) mode (wavelength=the entire toroidal
circumference), and the superposition of the m = 1, n = 7–
23 modes. The m = 0 modes resonate at the reversal surface
q = 0, where Bφ = 0, and form a chain of islands [12, 13] with
multiplen’s, withn = 1 the largest in the MH state. Figure 2(a)
shows, together with the flow, a Poincaré plot where, for
simplicity, only the (0, 1) mode is plotted: the reversal surface

is marked as a horizontal, dashed line. The main source of
particles is independent of the m = 0 modes, being aligned
with the maximum m = 1 bulge at φ = φlock (‘locking angle’,
figure 2(d)), where the plasma-wall interaction (PWI) is also
maximum2, a well-known result in the RFP [27]. In contrast,
the stagnation point for the plasma flow corresponds to the
X-point of the (0, 1) island and to the maximum radiation,
at φ − φlock ∼ 100◦ (figure 2(b)). The toroidal convective
flux associated with the flow reversal can be easily calculated
as vφnedge = 15 km s−1 · 1019 m−3 � 1023 m−2 s−1, which
exceeds the local radial diffusive flux by more than one order
of magnitude [14]: it is this huge convective flux that causes the
edge density peaking, which is clearly visible in figure 2(c) in
the same toroidal region of the maximum radiation, with a local
density exceeding 1020 m −3. This is sufficient to conclude
that the particle accumulation is due to the flow reversal, in
the form of a huge convective cell that carries matter from the
maximum m = 1 bulge at φ − φlock = 0, right to the X-point
of the (0, 1) island at φ − φlock ∼ 100◦, and that a crucial role
for reversing the flow is evidently played by the X-point of the
(0, 1) island. The particle confinement is therefore determined
by the flows and related electric fields in the edge, as shown
by the density map in figure 2(c). In this view, the dependence
of this phenomenology on the empirical threshold ne ≈ nG,
more than defining a parameter space for RFP operation,
indicates a dependence of particle confinement on the ratio
ne/Ip, which can be translated into a collision frequency:
in fact, ne/nG ∝ ντtor, collision frequency normalized to
a particle toroidal transit time, τtor = 2πR0/vth, with vth

thermal velocity. This fact relates the RFP high-density flows
and particle accumulation to RMP experiments in tokamaks,
where particle confinement depends on the edge magnetic
topology [20].

3. Test particle simulations

3.1. The code and connection lengths

To simulate the flow pattern presented so far, we make use
of the guiding-centre code ORBIT [19] to analyse the magnetic
field topology and the motion of monoenergetic electrons and
ions embedded in the magnetic field, initially without potential.
Boozer coordinates are used in ORBIT, ψp, θ, ζ (ψp poloidal
flux and ζ = φ − ν(ψp, θ), ν function necessary to get the
Jacobian proportional to the field, J ∼ 1/B2). A great
advantage in the RFP configuration is that the perturbations
are known with fairly good accuracy: the radial profile
(‘eigenfunction’) of the m = 0, 1 and n = 1 − 23 global,
kink-tearing modes can be calculated through a linearization
of the finite-conductivity, MHD equations. This was shown
by Robinson in 1978 [28], which is essentially the analogue
of Newcomb’s analysis [29] for a diffuse pinch. In RFX-
mod we use the refinement of this theory, brought about by
Fitzpatrick, Zanca and Terranova in toroidal geometry, with the
experimental pick-up coil spectra used as constraints [30, 31].
Generally speaking, ORBIT can accept any radial function

2 Usually in MH studies the toroidal location of the m = 1 bulge, φlock, is
the zero for comparing different measurements along the toroidal angle. In
the remainder of the paper all toroidal angles will be normalized to φlock, or
ζlock in Boozer coordinates.
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Figure 3. Poincaré plot as obtained from the ORBIT code, equatorial cut at θ = 0. Color codes indicate the electron characteristic length L‖
defined as the length of the path followed by the electrons parallel to the magnetic field from their initial position
(ψp,1, θ1, ζ1) = (0.093, random, ζ1) to their exit position (ψp,2, θ2, ζ2) = (ψp,2, random, random). The map describes L‖(ζ1, ψp,2), each
point (ζi , ψp,j ) of the grid being the initial toroidal angle and final radius of a single run, ζi = ζ1 and ψp,j = ψp,2. The dashed, horizontal
line corresponds to the reversal surface, the dashed-dotted line to the wall, ψp = ψw.

as input perturbation: in the RFP we have also used those
calculated from a non-linear, visco-resistive MHD code [2, 12].
The sole approximation is that in the code enters the scalar
function α(ψp), obtained through the relation δB = ∇ ×αB,
B being the equilibrium magnetic field. With this position,
the Hamiltonian (toroidal flux in the RFP choice [32]) H = ψ

for the field lines becomes the sum of two terms

H(ψp, ζ ; θ) =
∫

q dψp +
23∑

m,n=1

(m

n
g + I

)
αm,n(ψp)

× sin(mθ − nζ + φm,n), (1)

g, I being the covariant components of the field in ORBIT

notation [19], φm,n the experimental phases of the modes. The
associated canonical equations are

dψp

dθ
= −∂H

∂ζ
, (2)

dζ

dθ
= ∂H

∂ψp
= q(ψp). (3)

In this way, for each m = 0, n component, α0,n becomes
the usual Hamiltonian ‘perturbation’ parameter, and the
Hamiltonian has the form

H(ψp, ζ ) = H0(ψp) + αH1(ψp, ζ ) , (4)

which is independent of the ‘time’ θ , which justifies the
presence of conserved m = 0 islands at the reversal
surface, q = 0 [12, 13]. Collisions enter through a
pitch-angle scattering operator, implemented by taking into
account ion–ion, ion-electron, electron–electron, electron–
ion and ion-impurity encounters, using the Kuo–Boozer
approach [33]. The pitch-angle scattering operator thus
describes the exchange of momentum between particles, due
to a Coulomb scattering: in the code it is implemented as a
diffusion operator in the space of the ‘pitch’ parameter, λ =
v‖/v. It is therefore the ordinary way particles can be trapped
and de-trapped in a magnetic mirror [34]. Finally, since the

standard ORBIT boundary is perfectly absorbing (R = 0), which
is suited for simulating fast-particle losses [35], we had to
modify it [16] to account for recycling R = 1, in order to
deal with the RFX-mod first wall, which is fully covered by
graphite tiles [36]. In our scheme, if a particle hits the wall, it
is lost and replaced by a new particle, at a distance of one ion
gyroradius ρi from the wall, the same (θ, ζ ), but with a new
random pitch.

To characterize the RFX-mod edge, let us analyse first the
connection length of the topology shown in figure 2(a) . Define
a grid in radius and toroidal angle, (ζi, ψp,j ). Let us consider
electrons (ions have larger gyroradii, ∼1 cm in the RFX edge,
so they average out the field in one gyroradius), and define
the parallel connection length as L‖(ψp, θ, ζ ) � vthτtrav, τtrav

being the electron travel time between the initial (ψp,1, θ1, ζ1)

and final positions (ψp,2, θ2, ζ2). Assign one point of the grid
to the initial toroidal angle, ζ1 = ζi , and the other one to
the recovery radius, ψp,2 = ψp,j : in this way each point
in the grid corresponds to an individual run. The initial
radius is fixed for all runs, ψp,1 = 0.093, and corresponds
to r � 44.6 cm, r/a = 0.97, which is ∼2ρi ion Larmor
radii from the wall, ψw = 0.096 ≡ a = 45.9 cm (a Larmor
ion radius for the parameters of this run is ρi ∼ 8 mm,
2 × 10−3 in ψp units). The initial poloidal angle is random,
and we disregard the final poloidal and toroidal angles: in this
way, initial and final conditions are (0.093, random, ζi) and
(ψp,j , random, random), 1 � i � 25 and 1 � j � 15. For
each run we launch 1000 electrons, and follow them for 1000
toroidal turns until the stop condition ψp = ψp,j is reached
for at least 500 particles (half loss stop), with energy 260 eV
and normalized collision frequency νeτtor = 1.42. At the end
of the run we register L‖, which represents the path electrons
follow along the field lines from 2ρi Larmor radii next to the
wall, to the recycling wall and back to ψp,j , for a fixed toroidal
slice ζi . Figure 3 shows a contour map of L‖(ζi, ψp,j ), over-
plotted to the Poincaré section of the edge, for a RFX-mod
discharge near the Greenwald limit (discharge # 19955, time
81 ms, ne/nG = 0.8). The Poincaré section is performed by
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Figure 4. Diffusion plots of electrons and ions: (a) 2D pdfs N(ζ, ψp) of final positions taken by electrons at the end of the run, colour code
indicates number of particles in each (ζ, ψp) bin; (b) the same for ions; (c) pdf of angles Nζ (red=electrons, blue=ions); (d) pdf of radii Nψp .

adding all the m = 0, 1, n = 1−23 modes in the spectrum: the
topology is much more complicated now than in figure 2(a).
Two effects combine: higher m = 0 harmonics determine
a multiplicity of islands which correspond to the secondary
maxima of the ‘potential’

H1 =
23∑

n=1

Iα0,n(ψp) sin(−nζ + φm,n) . (5)

The second effect is that the addition of the m = 1 modes
determines the creeping of chaos in the separatrices of the
m = 0 islands [12]. Despite these complications, the map
of L‖ shows a clear n = 1 modulation along the toroidal
angle ζ , being L‖ ∼ 12 km near the X-point of the (0, 1)

island, and L‖ ∼ 50 m near the O-point, two orders of
magnitude difference (compare the map of L‖ in figure 3
with the simplified Poincaré map of figure 2(a)). This is the
confirmation of the theoretical result that X-points possess
structural stability, namely, a perturbed X-point remains an
X-point [37]. The mechanism acting in the edge of the
MH RFP near the (0, 1) X-point is therefore similar to the
homoclinic manifolds operating in the vicinity of the X-point of
a tokamak divertor [7, 38], and this similarity can be extended
also in the helical state of RFX-mod, as shown in [39].
In contrast, the behaviour near the (0, 1) O-point is a free
streaming of electrons along chaotic field lines that intercept
the wall, which can be paralleled by the ‘density pump-out’
phenomenon in tokamak plasmas with RMPs [40]. Of course,
the picture of electrons free-streaming to the wall is naive,
since immediately a strong ambipolar potential builds up to
balance radial diffusion. But this will happen at the expense

of the symmetry in the toroidal angle. In fact, given so a large
difference in the radial diffusion of electrons along the toroidal
angle, one can expect the ambipolar potential to possess a
m = 0, n = 1 symmetry, parent to the symmetry of the island
that generates differential radial electron diffusion.

3.2. Diffusion plots

The connection length behaviour shown in section 3.1 for
electrons is expected to generate a differential electron-to-
ion diffusion rate, modulated along ζ . To demonstrate this,
let us consider diffusion plots of electrons and ions, for the
same topology of figure 3. Initiate a wide distribution of a
large number (6 × 104) of electrons and H+ ions deposited
at ψp(0) = 0.093 (r � 44.6 cm, r/a = 0.97, the same as
in the run of section 3.1), and θ , ζ random. Particles are
monoenergetic, with the same energy Te = Ti = 260 eV.
Collect particles at ψp = 0.079 (r � 39 cm, r/a = 0.85),
and stop the run when half of the particles cross the collection
surface: then analyse the distribution of final positions taken by
particles remaining in the domain, between ψp = 0.079 and the
wall ψw = 0.096. The choice of stopping the run with a half-
loss condition is somewhat arbitrary, but it allows for evolving
the system to an equilibrium between conserved and lost
particles, with good statistics to define the outward fluxes [41].
According to the dominant geometry, we will discard the θ

angle, and consider the 2D-probability distribution function
(pdf) N(ζ, ψp) of toroidal angle and radius. Results are shown
in figure 4: panel (a) shows the bi-dimensional distribution
of electrons, where the colour code represents the number of
particles in each (ζ, ψp) bin, and the horizontal, grey solid
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line at ψp = 0.093 marks the deposition surface. The reversal
surface is marked by the horizontal green-dashed line. Overall,
electrons tend to accumulate at ζ−ζlock = 2–3 radians, namely,
the region of long connection lengths of figure 3, as expected.
The region of the O-point of the (0, 1) island is devoid of
electrons, but with radially and toroidally localized ‘holes’,
corresponding to the secondary m = 0 islands (secondary
maxima of H1 in equation (5)). These holes are generated by
motion on a very short timescale (compared with the run time),
and they could correspond to Lévy flights [42–44], which on
the other hand have been identified up to now only in the
core of the chaotic state of the RFP [2]. In contrast, electrons
tend to accumulate around the secondary X-points (secondary
minima of H1), where connections lengths are larger. Simply
stated, electrons follow closely the magnetic topology. Let
us consider now ions: figure 4(b) shows the bi-dimensional
distribution of ions at the end of the run. The distribution is
more uniform, both in the angle ζ and radius ψp: radially,
most ions diffuse only a few Larmor radii from the deposition
surface (horizontal, grey solid line), which is reasonable since
the magnetic topology in the RFP edge shows a degree of order
sufficient to slow down ion transport considerably from the
chaotic, MH level typical of the core plasma, to a level closer
to the neoclassical baseline [12]. Toroidally, ions average out
details of the magnetic topology which are of the order of their
Larmor radius, and their drifts are also larger. These two effects
combine to produce a more uniform diffusion in the magnetic
field along the toroidal angle: there is only a local ‘hole’ of
ions around the locking angle at ζ = ζlock, corresponding to
the maximum m = 1 bulge, which is a well-known region
of increased PWI [27], as shown previously when discussing
figure 2(d).

To compare directly electron and ion distributions, in
figure 4(c) we compute the angular pdfs, by integrating N

along the radial coordinate, Nζ = ∫
dψpN(ζ, ψp), and plot

them together: apart from the region around ζ − ζlock = 0,
where the statistics for both electrons and ions is rather poor,
there is a local excess of electrons at ζ − ζlock ∼ 2 radians
(X-point of the (0, 1) island) and a local excess of ions (with
respect to electrons) at ζ − ζlock ∼–2 rad (O-point of the
(0, 1) island). The two horizontal, dashed lines correspond
to the average value of the distributions Nζ in the regions left
and right to ζlock, and help us to visualize the differences in
ion and electron motion in those regions: this makes evident
that ion distributions are uniform left and right to ζlock, while
electrons are strongly asymmetric. Electrons are therefore
responsible for the charge imbalance, through the mechanism
of the homoclinic manifolds (acting mainly on electrons!)
discussed in section 3.1. In this way, we can expect the
ambipolar potential to possess the same symmetry of the parent
island.

It is worth noting that the charge imbalance near the
X-point of the (0, 1) island shown on the right of ζlock in
figure 4(c) is not directly the density accumulation in the
MARFE-like structure shown in figure 2. In fact, a simple
argument based on the experimental values of Er in the
edge gives a local excess of electrons ρe � 1014m−3 near
the X-point, to be compared with the edge density peak
ne ≈ 1020m−3 [16]. The charge imbalance generates the
electrostatic potential �, and � generates the flow which is
ultimately responsible for the MARFE.

Finally, let us comment the radial distribution, integrated
along the angle, Nψp = ∫

dζN(ζ, ψp), shown in figure 4(d):
the deposition radius corresponds to the vertical, solid grey
line, the reversal is the green-dashed line. The behaviour of
Nψp shows that, if one averages out the toroidal asymmetries,
there is a local cloud of positive charge next to the wall,
which extends ∼ 3ρi ion Larmor radii from the wall (recall
here that ρi = 2 × 10−3 in ψp units). This is a combined
effect of recycling R = 1 and larger electron mobility (of
Lévy-type [2], or not): the final outcome is an electric field
whose radial component is (on average over the toroidal angle)
inward-pointing, as seen in measurements on RFX [45, 46].
The picture we get here is anyway more complicated than
a finite-Larmor radius effect [47], and could be a caveat for
the tokamak experiments of RMP: when inducing chaos in
the edge, a differential electron-to-ion motion (nearly ballistic
for electrons, nearly neoclassical for ions) builds up almost
immediately a potential, whose direction depends on the wall
conditions, and whose symmetry is parent to the islands
generated in the edge. In fact, the electric field dependence
on the angular coordinate θ has already been simulated in the
tokamak [48].

4. The ambipolar potential

4.1. The model for the potential

The problem of a self-consistent evaluation of an electric
field within ORBIT (using Poisson’s equation to determine
step by step the potential needed for ambipolarity) requires
following together electron and ion dynamics, i.e. matching
temporal steps which are a factor

√
mi/me different: this is an

extension to a whole different world, similar to the gyrokinetic
simulations. A self-consistent calculation of the potential
can be done within simplified dynamics, i.e. maps, such as
the ‘twist map’ [49], and has been successfully applied to
tokamaks by Spatschek and collaborators [11, 38, 50]. Here we
will follow a much simpler approach, already followed in the
RFP helical state [41, 51]: we maintain the separation between
electron and ion runs, and impose an analytic function for the
potential �(ψp, θ, ζ ) which can be inserted in the guiding-
centre equations of motion. To build the function � one can
obviously use the results of section 3.2, but much more valuable
is the knowledge of experimental data to compare with. The
criteria are:

(i) ∂�/∂θ = 0;
(ii) the angular dependence in ζ has to balance electron and

ion distributions, so it has to speed up electrons in the X-
point of the (0, 1) island, and trap them near the O-point;

(iii) the radial profile (radial potential well) should be guessed
from existing data, namely those described in [45, 46];

(iv) it has to retain the main features of figure 4, without caring
too much about the details of secondary islands.

The simplest analytical form for the potential reads:

�(ψp, ζ ) = −Eaψp

−1

2
Er,w

[
σψp log

(
cosh

(
ψp − ψp,rv

σψp

))
+ ψp

]

×
(

2e−(ζ−ζ0)
2/2σ 2

ζ − 1
)

, (6)

6



Nucl. Fusion 52 (2012) 054015 G. Spizzo et al

Table 1. Guess values for the parameters describing the ambipolar
potential.

Parameter Value

Er,w 3.5 kV m−1

ζ0 1.74 rad (=100◦)
σζ 0.87 rad (=50◦)
ψp,rv 0.083
σψp 5 × 10−3 = 2.5ρi

Ea −1.5 kV m−1

where for simplicity now ζ is taken as already normalized
to ζlock. There are six free parameters, whose initial values
are reported in table 1: the radial position and width of the
potential well, ψp,rv and σψp , the toroidal position and width
of the potential well, ζ0 (‘potential phase’) and σζ , the negative
baseline of the radial electric field, Ea, and the potential
amplitude, Er,w.

The initial guess for the potential amplitude and phase
are Er,w = 3.5 kV m−1 and ζ0 ∼ π/2 = ζX: the amplitude
matches old RFX measurements [46], the phase makes the
potential well coincide toroidally with the location of the X-
point of the (0, 1) island. The guess for the phase is somewhat
justified by the need of speeding up electrons sticking around
the X-point, and trap those free-streaming to the wall near the
O-point. Differentiate equation (6)

Eψp(ψp, ζ ) = − ∂�

∂ψp

= Ea +
1

2
Er,w

[
tanh

(
ψp − ψp,rv

σψp

)
+ 1

]

×
(

2e−(ζ−ζ0)
2/2σ 2

ζ − 1
)

. (7)

Equation (7) takes the form of figure 5(a), dash-triple dot line:
in the potential well ζ = ζ0 the radial electric field in the edge
is positive, and changes sign at ψp = ψp,rv − σψp = 0.077,
which corresponds to ∼38 cm (r/a = 0.83). The inflection
point ψp = ψp,rv corresponds to the potential well, and is
guessed to be the reversal radius, according to our initial
hypothesis that the ambipolar field is generated by the (0, 1)

island resonating at q = 0. For ζ 
= ζ0, Eψp becomes
negative, with the most negative value acquired at ζ = −π/2,
namely, at π distance from ζ0, right into the potential hill.
The behaviour of the radial electric fields mimics old RFX
data showing the edge Er changing sign along φ, coherently
with vφ [46]. The guess for the radial half-width of the
potential well, σψp = 5 × 10−3 equivalent to 2.5ρi ion Larmor
radii, is consistent with the results of section 3.2, and with
measurements in the old RFX [45]. The bias Ea < 0 is
guessed to match the values of Er(a) given in [46]; in the core,
the model (equation (7)) assumes the electric field levelling
off to Ea, since our simulations never explore the plasma
ψp < 0.079.

The angular dependence of the potential (equation (6))
is derived from recent data from the GPI diagnostic [25, 26],
which have been briefly recalled in section 2. In particular,
as a first guess we choose ζ0 ∼ π/2 = ζX and σζ = 50◦,
which corresponds to choosing a potential well centred in the
(0, 1) X-point, 100◦ toroidal degrees wide: the final contour
plot of �(ψp, ζ ) is shown in figure 5(b). The most noteworthy

feature of our potential model is the presence of a saddle point
at ζ = ζ0: along the radius the potential shows a peak at
ψp = ψp,rv, while along the angle it has a minimum at ζ = ζ0.
Insert these values in equation (6) to obtain the potential at the
saddle point

�(ψp,rv, ζ0) = −(Ea + 1
2Er,w) ψp,rv , (8)

shown clearly as an X-shaped contour in figure 5(b). The
region of the saddle point (inset in figure 5(b)) is crucial
from the point of view of transport: generally speaking, as
a consequence of (∂�)/(∂ζ ) 
= 0, a toroidal component of the
electric field appears, one order of magnitude smaller than
the radial one (minimum Eζ = −0.25 kV m−1, minimum
Eψp = −5 kV m−1). Around the saddle point, this brings about
the formation of a convective cell, shown as an expanded inset
in figure 5(c). The particle motion in presence of the saddle
point complicates the simple picture of particle diffusion in the
magnetic field: it appears as a periodic component (oscillation)
down the potential, plus an E × B drift across the potential,
which can be seen along with many oscillations up and down �

as a convective term v · ∇� = 0 on the equipotential surfaces
that conserves kinetic energy. This convective term along
the equipotential surfaces is likely to coincide with the GPI
flow that determines particle confinement in the RFP edge, as
described in section 2.

Finally, it is worth underlining that � is not a flux function,
� 
= �(ψ) with ψ defined by equation (1), which is the
usual choice when considering the ambipolar field generated
by an island [41, 51]. This latter choice is justified by the
fact that electrons average out any charge imbalance along
ψ , provided ψ does not intercept the first wall. But this
is not our case (see e.g. figure 3), thus our equipotential
surfaces are not flux surfaces, v · ∇ψ 
= 0 and the convective
term will cause effective transport across the magnetic field.
The flux surfaces ψ overlapping the first wall is therefore
a necessary condition for generating convective cells and
MARFE phenomena, as found experimentally both in the
RFP [16, 52] and the tokamak [53].

4.2. Particle transport with the potential

Here we want to apply the analytic form of the potential to
ORBIT runs. Of the six free parameters, four can be fixed to
their guess values of table 1 without losing generality. Those
are ψp,rv, which can be fixed to the reversal radius on the basis
both of theory (section 3) and experiment [46]; the bias Ea,
which is independent of the (0, 1) modulation; and finally
the radial and toroidal widths σψp and σζ , which change only
the details of electron and ion orbits without adding much to
the basic physics of the ambipolar potential. There remain only
two parameters left, which are fundamental in determining the
potential behaviour: the potential amplitude Er,w and phase ζ0.

The amplitude can be easily determined in simulations
by varying the free parameter Er,w until electrons of a given
energy are trapped toroidally in the potential: this is a simple,
necessary condition for the ambipolar field to work properly.
Launch many single particle runs corresponding to electrons
of different energies, no collisions and no perturbations, ζ0 =
100◦ as in table 1, start from the guess valueEr,w = 3.5 kV m−1

and vary it until a closed orbit in ζ is reached around ζ0.

7
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Figure 5. Analytical model for the ambipolar potential, parameters are initial guesses as in table 1: (a) radial dependence of
Eψp = −(∂�/∂ψp) (‘radial’ electric field) at different angles: solid line, ζ = −π , dashed line − − −, ζ = −π/2, dashed-dotted −. − .−,
ζ = 0, dash triple dot −... − ...−, ζ = π/2. (b) Contour plot of the potential �(ζ, ψp): the saddle point corresponds to ζ0 = 100◦ and
ψp = ψp,rv = 0.083. (c) For the inset in (b), the vector field describing the electric field Eψp , Eζ , showing the development of a convective
cell in correspondence to the saddle point depicted in panel (b).

Figure 6. Radial electric field at the wall Eψp(ψw) = Ea − Er,w as a
function of electron energy, in the code (black, full squares �), and
corresponding measurement Er(a) in the experiment RFX-mod
(pink, full triangles �). Open triangles (�) correspond to lithized
discharges via Lithium pellets.

Choosing ζ0 as in table 1 does not influence the result, since we
do not consider perturbations, there is symmetry in ζ and any
ζ0 is equivalent. We compute for each run the radial electric
field at the wall, Eψp(ψw) = Ea − Er,w (equation (7) with
ζ = ζ0 −π and ψp = ψw). The dependence of Eψp(ψw) on the
electron temperature (energy) is shown in figure 6 (black, full
squares �), with the expected linear dependence on energy,
Eψp(ψw) = −Te/eLwell. The proportionality constant is a
length, Lwell ∼ 6.6 cm, which obviously is in good agreement
with the radial extent of the potential well, Lwell = 2σψp . The
experimental evaluation of the radial electric field at the edge
Er(a), which corresponds to Eψp(ψw) in simulations3, can be
done for comparison by means of the GPI. Subtracting from

3 Strictly speaking, the contravariant component of the electric field Eψp is not
directly comparable to the radial electric field measured in the local triad, Er̂ .
In RFX-mod anyway Er̂ = Er = −(∂ψp/∂r) (∂�/∂ψp) = (∂ψp/∂r)Eψp .

Therefore Er̂ = R0B
θ̂Eψp , and since R0 = 2 m and the local Bθ̂ (a) = 0.5 T

finally Er(a) ≈ Eψp (ψw).

measurements the (expected) contribution of the diamagnetic
flow, which in RFX-mod accounts for an average 15% on the
total measured flow only, one obtains

Er(a) = Ti

Ze

∇Pi

Pi
+ vφBθ −vθBφ = 0.15Er + vφBθ + O(Bφ)

≈ 0.15Er + vφBθ , (9)

given Bφ is negligible in the RFP edge compared with Bθ .
The measurements are shown in figure 6 as pink, full triangles
� over-plotted to simulated values: the agreement between
theory and experiment is rather good, showing that the radial
electric field measured in RFX-mod is mostly ambipolar,
within a 15% uncertainty due to the diamagnetic contribution.
The plot shows also a consistency of the chosen radial extent
of the potential well.

Finally, let us use the potential to balance electron and
ion diffusion with perturbations. Let us repeat the exercise of
section 3.2, and launch 6×104 electrons and ions in the domain
(0.079 < ψp < ψw, θ, ζ ) subject to magnetic field, collisions
and the potential as in equation (6), other parameters as in
table 1. The amplitude has been chosen as Er,w = 4 kV/m,
according to E = 260 eV and figure 6. Define the outward
flux

� = #particles

S × runtime
, (10)

number of particles exiting the domain, divided by the runtime
and the bounding surface S at ψp = 0.079. Each run is
performed by varying the only free parameter left, the potential
phase ζ0, which corresponds to the saddle point shown in
figure 5(b): then look at the fluxes �e and �i. The results are
shown in figure 7, where each point represents one single run:
on the x-axis we plot the phase difference between the potential
saddle point and the X-point of the (0, 1) island, �ζ = ζ0−ζX.
We see that we get ambipolarity in ORBIT, within the hypotheses
of the code, for �ζ = 3

4π , which is shifted toroidally of ∼ π

with respect to our initial guess �ζ = 0, or ζ0 = ζX. This
means that the potential causes a toroidal drift of particles and
has to readjust the phase from the initial guess �ζ = 0 to

8
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Figure 7. Electron and ion fluxes, �e (red) and �i (blue) as a
function of the phase of the potential, relative to the (0, 1) X-point,
�ζ = ζ0 − ζX . The initial guess ζ0 = ζX is marked as a dashed,
vertical line: ambipolarity is reached in the code for �ζ ≈ 3/4π .

match the new particle positions. This is a consequence of the
fact that the drifts are not tangent to the toroidal flux surfaces,
v · ∇ψ 
= 0. Anyway, the presence of a phase shift �ζ 
= 0
is somewhat justified by the experiment, where �ζ � −π/2,
namely, the distance between the two vertical, dashed lines
in figure 2. This is a necessary condition in experiment to
generate a edge density peak (which in the Greenwald limit
phenomenology causes the MARFE appearance). In fact, only
in that case the main particle source (which depends on the
magnetic island) corresponds to the inward-pointing part of the
convective cell (which depends on the ‘potential’ island). We
speculate that adding energy-exchanging collisions in ORBIT

could drastically change the motion in the potential, and the
value of �ζ required for ambipolarity, since they will allow for
trapping and de-trapping of particles in the potential well. Our
result �ζ = 3

4π should therefore be taken as the collisionless
limit of our theory. The collision frequency is likely to change
the value of �ζ , and switch on the mechanism of convective
flux that determines the Greenwald limit in the RFP.

5. Conclusion

In this paper we have shown that magnetic topology and
plasma flow deeply influence edge transport in the RFX-mod
RFP, in particular the access to high-density regimes, where
edge particle accumulation (toroidally localized and poloidally
symmetric) limits the global particle confinement. A central
role is played by the electric field determined by the ambipolar
constraint. The radial componentEr is measured with different
techniques, and is a guess for constructing a model of the
potential needed for guaranteeing ambipolarity. Restraining
our analysis to high-density discharges, numerical simulations
with ORBIT show that a proper analytic form of the potential
can balance the different radial diffusion of electrons and ions
subject to magnetic field and collisions with a background, but
this happens at the expense of the toroidal symmetry, since the
origin of the differential diffusion lies in the fact that electrons
accumulate near X-points of m = 0 islands resonating at the
q = 0 surface. In this way, magnetic islands in the edge
interacting with a recycling wall can generate a potential which

possesses the same symmetry as the parent islands. In the
tokamak, the development of a potential not symmetric in the
angle could be a drawback of the application of the RMP. In
the RFP, a non-toroidally symmetric potential is associated
with a convective cell which causes an abnormal edge density
accumulation.

Presently, simulations show that collisions do not enter too
much in the mechanism governing the development of these
convective cells in the RFP edge, but it is worth recalling that
ORBIT treats pitch-angle scattering only, i.e. the exchange of
momentum between particles. The next step is to take into
account energy-exchanging collisions, allowing for trapping
and de-trapping of particles in the potential well. This will
also allow for exchanging energy with the wall, that will enter
directly in the trapping/de-trapping mechanism.

There are evidences that a mechanism similar to that
described here in m = 0 symmetry for the Greenwald limit, is
at work in the helical state (QSH) of the RFP, with a different,
m = 1 symmetry: measurements of a helical flow associated
with the m = 1, n = 7 island have recently been reported [54],
together with the observation of a helical modulation of
edge electron pressure, floating potential, particle influx and
radiation losses [17]. It is reasonable that a helical modification
of the ion-to-electron diffusion rate in correspondence to edge
magnetic islands could generate a mechanism of critical edge
density similar to the RFP m = 0 case. Experimentally, the
QSH operational space is limited in the attainable density at
a relatively low value of ne/nG, without detectable QSH for
ne/nG � 0.4. Nevertheless, while in the m = 0 case it is clear
that the final limiting mechanism is a radiative condensation
due to a over dense plasma, similar to the MARFE, in the
QSH case the connection between potential/flow pattern and
phenomenology of QSH disappearance is still under debate.
From the point of view of the model, formally the Hamiltonian
H = ψ describing m = 0 islands (equation (1)) can be
transformed into a helical Hamiltonian H̄ = χ substituting
χ = mψp − nψ and u = mθ − nζ [32, 55], with final form:

H̄ (ψp, u) = mψp − n ×
∫

q dψp

−
∑
m,n

(mg + nI)αm,n(ψp) sin(u + φm,n) , (11)

and associated canonical equations

dψp

dθ
= −∂H̄

∂u
, (12)

du

dθ
= ∂H̄

∂ψp
= m − nq(ψp). (13)

In the case of only one harmonic, e.g. m = 1, n =
7, the Hamiltonian is independent of ‘time’θ [5], and the
analogy between equations (11) and (1) allows us to expect
a modulation of L‖ along u, similar to the modulation of L‖
along ζ of figure 3, with the development of a edge helical
potential with (∂�/∂u) 
= 0, a saddle point and associated
convective cell.

From the experimental point of view, it is worth
mentioning that the mode frequency in RFX-mod is limited
by the combined action of the feedback system and the
resistive shell penetration time to ∼25–50 Hz [56]. Since the
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characteristic rise time of density is ∼40–60 Hz, the recycling
pattern is always parent to the magnetic topology, given that
neutrals released from the wall are not averaged over many
mode periods. In TEXTOR this behaviour is avoided by
increasing the mode frequency of applied perturbations: as
a result, the occurrence of the MARFE is reduced [8]. In
RFX-mod a program of Lithium wall-conditioning, in order
to absorb particles, reduce degassing and decouple wall and
modes has been undertaken in 2010 [57].
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