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Abstract.

The electrostatic response of a tokamak edge plasma to magnetic island
with 4/1 poloidal/toroidal mode numbers is analyzed in direct comparison of
measurements with the Hamiltonian guiding center code ORBIT. We find a
strong correlation between the magnetic field topology in ion and electron velocity
space and the poloidal modulation of the plasma potential measured. The ion
and electron drifts yield a predominantly electron driven radial diffusion when
approaching the island X-point while ion diffusivities are generally an order of
magnitude smaller. This results in build up of a strong radial electric field
structure pointing outward from the island O-point. An excellent agreement
between measured and modeled plasma potential has been found. This shows
that, in a tokamak edge plasma, a magnetic island can act as convective cell
as pointed out by previous results. Here, we show for the first time that the
particular drifts of electrons and ions in a 3D magnetic topology account for these
effects. An analytical model for the radial particle diffusion is derived and it is
shown that both, an ion and an electron diffusion dominated transport regime
can exist which are known as ion and electron root solutions in stellarators. This
finding and comparison to reversed field pinches shows that the role of magnetic
islands as convective cells and hence as major radial particle transport drivers is
generic to 3D plasma boundary layers of toroidal magnetic confinement devices.

PACS numbers: 52.20.Dq,52.65.Cc
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Plasma flows along magnetic field lines under conditions of spontaneous self-
organization are a generic question in space and terrestrial plasma physics [1, 2]. In
magnetically confined high temperature plasmas explored for future fusion energy
production, such directed plasma flows are responsible for transport in the plasma
edge. By this, the magnetic field topology in the plasma edge and the resulting
transport characterizes the interface of the plasma to the surrounding neutral gas.
One form of such self-organized 3D magnetic structures are magnetic islands. Field
lines can be easily perturbed in a resonant way by magnetic field perturbations with the
same mode structure as the rational surface of these field lines. In tokamaks, this form
of resonant magnetic perturbation (RMP) is used to control plasma edge transport
and stability [3, 4]. In the edge of all fusion devices, it has been observed that kinetic
properties of the plasma, such as electron density and temperature [5, 6], electron
pressure [7], connection length [8], in presence of 3D fields and magnetic chaos in the
edge, show macroscopic modulations coherently with the symmetry of the dominant
magnetic island. Moreover, it has been shown that magnetic islands influence the sign
of the plasma flow, v, and the related radial electric field, E” [7, 9, 10, 11].

The actual relation of these magnetic structures to plasma confinement and
transport is an important question for fusion plasma research in particular as it has
been demonstrated that magnetic islands in the plasma edge have a profound impact
on plasma performance and plasma stability. At the RFP RFX-mod, for instance,
a direct connection between a convective cell pattern and the empirical density limit
(Greenwald limit) has been established [12, 13]. Island formation with impact on the
particle confinement is also discussed as a key mechanism for stabilization of high
confinement edge plasmas in tokamaks [14]. Finally, low-order rational surfaces in the
periphery of stellarators make them prone to island formation which in some devices is
used deliberately as exhaust layer between plasma core and the material wall elements
around the plasma [15].

Since particle drift extent depends on Larmor radius, electrons stream along the
field lines, while ions have larger mass and, hence, larger shift of the drift orbit from
the flux surface. This results in an ambipolar field, with the same symmetry as
the main magnetic island, to balance the drifts and ensure quasi-neutrality. On the
basis of transport particle simulations performed through the guiding center (GC)
Hamiltonian code ORBIT [16], a model of electrostatic potential was built up for the
island resonating with poloidal/toroidal mode number m/n = 0/1 at the edge of RFX-
mod [13], which reproduces the main features of E", such as amplitude and geometry
along the toroidal angle ¢.

In this Paper we present the first algebraic determination of an ambipolar
potential in a tokamak with resonant magnetic perturbation fields applied. We study a
circular shaped, high field side limited plasma at the TEXTOR, tokamak [17], where a
stochastic layer can be generated at the edge, by inducing RMPs through the Dynamic
Ergodic Divertor (DED) [18]. The particle transport properties of the magnetic
topology in the DED configuration m/n = 12/4 were analyzed using Poincaré plots
and by calculating the parallel connection length, L, for ions and electrons. The
resulting L map showed a radial and poloidal modulation, being footprints of the
magnetic topology [19]. Results with ORBIT are consistent with maps of connection
length made with GOURDON [20]. Previous results have pointed to the formation
of island convective cells due to E x B flows around magnetic islands [21, 22, 23, 24].
Here, we show for the first time that ambipolar potentials, with the same symmetry
as the magnetic island, due to differential drifts of ions and electrons in islands can
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account for the radial electric fields responsible for these flows. This potential is the
response of the plasma to non-ambipolar fluxes, generated through the breaking of the
toroidal symmetry by the 3D fields. The analogy is that of the neoclassical response
to magnetic islands in the stellarator [25], where banana trajectories do not close onto
themselves on the poloidal plane, due to the 3D distortion [26, 27]. In the case of a
stochastic edge, such as in TEXTOR, the tiny details of stochastic layers and fixed
points dominate over neoclassical effects in driving transport, and an optimal tool is a
guiding-center (GC) code, such as ORBIT [16]. ORBIT has an Hamiltonian formulation
of the GC equations of motion, plus the additional capability of describing collisional
effects for electrons/ions, through a Monte-Carlo package based on the Boozer-Kuo
operator [28]. A heuristic argument for demonstrating the need of a potential ® to
balance the asymmetry of electron/ion fluxes in presence of a 3D perturbation, can
be derived directly from the GC equations. Specify the equation for electrons and
ions [29], and neglect the ripple:

0P

P = ptB? gca + 5 (1)
- (i i 0P
where p| = myj/eB is the “paralle]” gyro-radius, P; is the canonical toroidal

momentum, and the magnetic field perturbation is treated as 6B =V x ago. Flux
coordinates of Boozer-type (1, 6,¢) are used. The meaning of Eqs. (1-2) is that, in
presence of a 3D field o, the toroidal momentum P is no more conserved in time. On
the other hand, a larger drift (larger pﬁ) for ions determines a different response to

the symmetry breaking brught about by d¢a, and this different change in PC must be
balanced by the ambipolar potential ®. Subtract (1) from (2)

o

B~ B = (o]~ o) B e~ 257 =0, (3)
and solve in terms of the potential
o 1, , .
ER ) (PH - P||)B2 I . (4)

If « is a single mode, & = ayy, p, sin(mb — n¢ + ¢), with ¢ phase of the mode, Eq. (4)
can be integrated to give

By, 0,0) =Boluy) + 5 (o] — 1) B (1) sin(md — nC + ) .
1 .
=Po(¢p) + B (pf| = P{)B*am.n(thp) sinu. ,

where u is the helical angle. This heuristic argument does not catch the overall
complexity of the electron and ion motion (full ORBIT simulations are needed), but
it shows that, whenever you break the symmetry, this is done differently for electrons
and ions, and a balancing ® is needed, which will be modulated as sinw. This is
independent of the shape of the equilibrium flux surfaces 1, and it is valid also for
slowly rotating islands, where u = mf — n¢ + wt.

The experiments on TEXTOR which are used in this paper have been performed
in the L-mode wall limited circular plasmas, with a mode number resonant field
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m/n = 3/1 produced with the Dynamic Ergodic Divertor (DED). The numerical
interpretation was conducted using test particle transport simulations by means of
ORBIT. We calculate the particle diffusion coefficients for electrons, D., and ions, D;,
and develop a model for the ambipolar potential, which describes the two-fluid, plasma
response to the RMP. The modeled potential reproduces quite well measurements of
plasma potential, performed with a Langmuir sweeping probe, inside of a m/n =4/1
island which is formed close to the plasma edge. The results show that the development
of an electrostatic potential is a general feature of magnetic islands resonating at the
plasma edge: moreover, two possible ambipolar solutions are present, which resemble
the “ion” and “electron-roots” typical of the E” in stellarators [30]. A consequence is
that modifying the T, /T; ratio can let the system flip from one solution to the other.

We consider a TEXTOR discharge with static RMP, in the m/n = 3/1 operational
mode. In Fig. 1 we show the Poincaré plot of the vacuum magnetic field lines,
superimposed to the helical 4/1 flux surfaces, 1/1,(14’1) [31], used for the computation
domain and displayed as blue curves. We can recognize the characteristic magnetic
topology of TEXTOR at the edge [20]: in the inner region the last main island
chain composed by three conserved structures (green points), in the middle four
remnant islands (purple points) and in the outermost region the laminar flux tubes
embedded into the stochastic fingers. In Ref. [13] we presented the calculation of the

Figure 1: Poincaré plot of the vacuum magnetic field lines, superimposed to the helical

4/1 flux surfaces, 1/1,(14’1) (blue curves). The x-axis is the poloidal angle while the y-axis
is the normalized radius.

particle diffusion coefficients, D, in between fixed points, O and X (OP and XP in the
remainder of the Letter). Here, we propose again the result as it is complementary to
the measurements of plasma potential and the modeled ambipolar potential, that we
present below. D is calculated in an helical domain centered at the ¢ = 4 resonance,
(r & 36 ¢m), and bounded by 1/),(:1’1), highlighted in orange and light green in Fig. 1,
respectively, which can be shifted from the OP towards the XP by varying the phase,
o, of 1/),(:1’1). We considered temperature T, = 90 eV and 7; = 100 eV and thermal
collisions with a background at density n. = 8.7 x 102 cm ~3. These values are
chosen to approximate the experiment conditions and calculated through the transport
code EMC3-Eirene [32] in unperturbed conditions. The area of the domain is an
Archimedes’ serpentine, namely, a cyclic helical surface generated by the helical motion
of a circle, whose area is A = 472b,/r2 + R2¢2. In the formula, b is the radius of the
circle normal to the helix, r, is the resonance radius, and R the major radius.

D, and D; are shown in Fig. 2 as a function of the helical angle uy 1 = 460—(+¢ [7],
with 6 and ¢ the general poloidal and toroidal angle, respectively (¢ = ¢ — v(,,0),
with v required to fulfill the straight-field line condition in Boozer coordinates [33]).
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Fig. 2 is adapted from Fig. 6 in Ref. [13]. Some D, values have been corrected (D,
curve is smoother), but the overall result does not change. D; is rather constant along
the path (=~ 0.1 m?/s), while D, is larger, with typical values in a stochastic field [34]
(0.6 +40 m?/s). More important, D, is strongly modulated along u (larger at the XP,
lower at the OP), consistently with the L simulations in Ref. [19], and the well-known
experimental result that the laminar flux tubes (XP of the 4/1 island) are pathways
of enhanced electron diffusion [20].

0.5
04f - 140

@ 03F ERa

E i E

8 o02f 120 8
0.1F M 110
0.0 { 0

0 /2 F 1 3/2xn 2n
OoP u [rad] XP

Figure 2: D; and D, values along the helical flux in between the OP and XP at 37/2.
On the x-axis the helical angle u = mf — n¢ + ¢.

Measurements of plasma potential have been done in the region of the 4/1 island
by means of a fast insertable probe located at the low field side of the TEXTOR
device [35]. The island is generated as a bifurcation with island opening at a
given threshold DED current (1.8 kA for this configuration). Then the island, once
generated, is moved poloidally by changing the phase of the DED current from shot
to shot and in each shot one radial plunge of the fast reciprocating probe is taken.
Fig. 3 shows a colored map of the measured plasma potential V,, in the (r,0) plane,

together with the helical flux surfaces %(14,1) and the magnetic field Poincaré map are
overplotted to V. A very clear correlation of the V,, shape with the magnetic topology
is found. In particular, the correlation is very strong in the region outside of the last
closed flux surface (LCFS), while inside V}, does not follow exactly the flux surfaces.
On the basis of the simulations of D and the measured V,, map, we find good reason
to assume that the ambipolar potential ® should possess the same geometry as the
4/1 island, similarly to the 0/1 and 1/7 island cases in RFX-mod [7, 13].

We now want to understand the link between the high electron diffusivity and
the electric field structure. We will use the algebraic determination of the ambipolar
electric field, which is customary in the stellarator community: some examples include
FORTEC-3D [36, 37] and EUTERPE-GSRAKE [38], or the linearized drift-kinetic equation,
such as in the case of DKES-PENTA [39]. In the chaotic transport calculations with
ORBIT it is easier to find a proper analytic form for ® to stick into the GC equations
of motion, Eqgs (1,2). To do that, we need to mix an experimental radial profile and
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Figure 3: Map of the measured plasma potential V,, as a function of the poloidal angle

0 and the normalized radius r. The helical flux surfaces w,(f’l) (white contours) and
the magnetic field Poincaré plot (points) are overplotted.

simulation observations along 0, as previously done on RFX-mod [13]. In this way,

B(0p0.0) = B0+ 572~ 1)
~ ()
sin(—mé + n¢ + (b)) ,

where

min 1 max min
fi(gp) =V, + E(V = Vi)

(1)) i

with ¢ = (1,2). f1 and f2 are the curves fitting the radial profile of V, (normalized
to (V,) =~ 85 V in the OP) at the poloidal positions of the XP (V%" = 0.35,
V"“”” = 0.94, ¢, 1 = 0.0145, Ae), 1 = 0.0005) and the OP (V"”" =0.41, V"“”” = 1.00,
¢p o = 0.0148, Ay, 2 = 0. 0003) respectively. By setting <I>0 =90V (the maximum

amplitude in the measurements) and (b = ¢, i.e. the same phase of wh , we obtain
a model ®, identical to the measured plasma potential, as shown in Fig. 4. This is
not surprising, considering the radial modulation of ® which coincides by construction
with measurements; but the fact that the poloidal dependence follows the geometry
of the island is a striking new result in the tokamak. This behavior was already found
instead in the reversed-field pinch RFX-mod [7], and in gyrokinetic simulations in
stellarators [38]. In Fig. 5, we map the E” = —0®/0r amplitude together with the
flux surfaces @[J}(:l’l) and magnetic field Poincaré plot, noting that E” is modulated both
in the radial and in the poloidal directions. In particular, a region of large positive E”,
along the LCFS, can be noticed. This is a confirmation of the well known presence
of a positive E” in the stochastic edge [40, 41, 42]. But, if we focus on this region,
we can note also a modulation in the poloidal angle, strictly linked to the magnetic
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Figure 4: Map of the modeled potential, @, in the (0, r) plane.
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Figure 5: Map of the modeled E" in the (6, r) plane.

topology, too: E" has a minimum in between the XP and the OP, and an absolute
maximum in correspondence of the XP. On the contrary, right into the OP, E” almost
vanishes, which is consistent with LHD results [24, 43]. Therefore, the potential well
is located near the XP, where the electrons are preferably lost, as shown in Fig. 2 and
in Ref. [19]. This rather complicated behavior of E” should be accounted for when
analyzing data in presence of RMPs [10, 44], since E" varies both over r and 6. Our
results have been obtained in the case of a static RMP: this solution is valid even in
the case of slowly rotating islands, as in the case of RFX [13]. In the case of fast
rotating islands (in TEXTOR, with frequency w > 3 kHz), it is necessary to account
for an inductive correction for ®, due to the term d,aB that adds to the expression
of Eq. (5). The complete expression for this inductive correction can be found in [45],
but it results in a simple Doppler shift of the potential ® in the rotating frame of the
island, which is consistent with the results by Stoschus et al. [6].

As a final test, we check the ambipolarity of ® by keeping ¢ = ¢ (maximum
potential at the OP) and evaluating the electron and ion fluxes as a function of
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Figure 6: Ton (blue) and electron (red) fluxes as a function of ®; and the maximum
E".

the maximum potential ®q: this is the algebraic way of determining the ambipolar
solution, used in the stellarator community [30]. Even if the method is well-known
since a long time, and its possible extension to a symmetry-breaking perturbation has
already been mentioned elsewhere [25], this is the first time that the calculation has
been fully carried on. To do this, we adapted ORBIT guiding center equations [16]
to correctly express electron drifts. We evaluate fluxes at vy, with source at ¢ = 4.
In Fig. 6 we plot the ion and electron fluxes as a function of ®; and the maximum
E". The two curves show two roots, similarly to stellarators [30]: an unstable ion-
root at E” < 0 (~ —150 V) and a stable electron-root at E” > 0 (~ 120 V'), where
the latter is found for a positive potential consistently with the experimental findings
(see Fig. 3). This shows that two solutions are possible: one with the potential well
(=maximum E") at the XP of the RMP (stable “electron root”, which is the solution
found in experiment), and the other with the potential well at the OP (unstable, “ion
root”). Here the name for the roots follows the usual meaning given in stellarators,
where “electron root” means the ambipolar root for the fastest particle involved in
radial transport. With the T, /T; ~ 0.9 ratio of TEXTOR, the electron root is favored,
but in principle it is possible, by acting on the T./T; ratio, to make the system flip
to the ion root. A sensitivity scan on this point can be done with ORBIT, by varying
T./T; (increasing T;), which would correspond to applying ion cyclotron resonance
heating (ICRH) in an experiment. We show the D./D; ratio as a function of T, /T; in
Fig. 7, with the diffusion coefficients calculated in the OP and XP. D./D; decreases by
increasing 7T; similarly in the OP and XP, moving from the TEXTOR experimental
condition, marked as a vertical red line in the picture. In the OP the system flips
to the ion root (D./D; < 1) for T./T; < 0.5. The opposite is seen experimentally
in stellarators, where the electron root can be induced actively by electron cyclotron
resonance heating (ECRH) [30]. Indeed, experimental results in the ASDEX-U and
FTU tokamaks show that disruptions can be mitigated by ECRH targeted on the 2/1
island [46]. We speculate that ECRH can modify the E” distribution in the edge, and
in this way the overall magnetohydrodynamics stability at the edge. In principle, this
can be also a way of overcoming the density limit, which critically depends on the
E" pattern, at least in the RFP [12]. Finally, it should be worth doing experiments
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Figure 7: D./D; as a function of T, /T; calculated in the OP and XP.

of ECRH in conjunction with RMP, to assess the role of E™ on plasma stability with
respect to the so-called edge localized modes [14].

In summary, we analyzed the local radial particle transport along a helical path
from the OP through the XP of an m/n = 4/1 remnant island, created near the
edge of TEXTOR. Electron diffusion is strongly modulated (larger at the XP, lower
at the OP), which requires a large electrostatic potential to ensure quasi-neutrality.
We developed a 3D model for the ambipolar potential on the basis of the geometry
of the remnant island: the resulting E” shows a large positive value near the LCFS,
confirming a well known result in the RMP tokamak community. The mechanism of
ambipolarity shows two possible solutions ("roots“), which suggests a way of acting
on the edge E” through additional heating.

This project has received funding from the European Union Horizon 2020 research
and innovation programme under grant agreement number 633053, and in part from
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